Created
April 7, 2021 06:03
-
-
Save ksv-muralidhar/b49e72bd133408d656585e75d7fd355d to your computer and use it in GitHub Desktop.
CLT
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
st.title("Visualizing Central Limit Theorem") | |
POP_MIN, POP_MAX = st.sidebar.slider('Select the population range (Example: range of age is 0-100)',0, 10000, (0, 1000)) | |
pop_size = st.sidebar.slider(label="Choose the Population size ('N') - Creates a population of size 'N' within the population range", | |
min_value=1000, | |
max_value=20000, | |
value=5000, | |
step=10) | |
@st.cache | |
def generate_population(): | |
np.random.seed(11) | |
population = np.random.randint(low=POP_MIN, high=POP_MAX, size=pop_size) | |
return population | |
population = generate_population() | |
st.sidebar.write(f'(Population mean, std): ({np.round(np.mean(population),2)}, {np.round(np.std(population),2)})') | |
sample_size = st.sidebar.slider(label='Choose the sample size (n)', | |
min_value=10, | |
max_value=2000, | |
value=100, | |
step=10) | |
sample_number = st.sidebar.slider(label='Choose the number of samples', | |
min_value=10, | |
max_value=2000, | |
value=100, | |
step=10) | |
@st.cache | |
def generate_samples(): | |
np.random.seed(11) | |
sample_index = np.random.randint(low=0, high=len(population), size=(sample_number * sample_size)) | |
sample = population[sample_index].reshape(sample_number, sample_size) | |
sample_means = np.mean(sample, axis=1) | |
return sample_means | |
sample_means = generate_samples() | |
fig = plt.figure() | |
plt.hist(sample_means,density=True) | |
plt.axis("off") | |
plt.title("Sampling distribution of sample means") | |
st.pyplot(fig) | |
fig1 = plt.figure() | |
plt.hist(population,density=True) | |
plt.axis("off") | |
plt.title("Population distribution") | |
st.pyplot(fig1) | |
st.sidebar.write(f'(Mean, std of sample means): ({np.round(np.mean(sample_means), 2)}, {np.round(np.std(sample_means), 2)})') | |
st.sidebar.write(f'pop std / sqrt(n): {np.round(np.std(population) / np.sqrt(sample_size), 2)}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment