Created
March 17, 2020 16:58
-
-
Save lamres/ec107f15b69b1e5df12491829ea0cb47 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import backtrader as bt | |
import pandas as pd | |
import numpy as np | |
from scipy import stats | |
import matplotlib.pyplot as plt | |
from DataFeedFormat import FinamHLOC | |
from TrendBreakerPLStrategy import TrendBreakerPL | |
import pyfolio as pf | |
import seaborn as sns | |
sns.set_style("whitegrid") | |
class BacktestTrendBreakerPL: | |
def __init__(self, | |
file_data, | |
algo_params, | |
output_settings | |
): | |
self.file_data = file_data | |
self.algo_params = algo_params | |
self.output_settings = output_settings | |
def run_strategy(self, cash=1000, commission=0.0004, tf=bt.TimeFrame.Minutes, compression=60): | |
cerebro = bt.Cerebro() | |
cerebro.broker.setcommission(commission=commission) | |
cerebro.broker.setcash(cash) | |
data = FinamHLOC(dataname=self.file_data, timeframe=tf, compression=compression) | |
cerebro.addanalyzer(bt.analyzers.TimeReturn, _name='returns') | |
cerebro.adddata(data) | |
cerebro.addstrategy(TrendBreakerPL, | |
pivot_window_len=self.algo_params['pivot_window_len'], | |
history_bars_as_multiple_pwl=self.algo_params['history_bars_as_multiple_pwl'], | |
fixed_tp=self.algo_params['fixed_tp'], | |
fixed_sl_as_multiple_tp=self.algo_params['fixed_sl_as_multiple_tp'], | |
order_full=self.output_settings['order_full'], | |
order_status=self.output_settings['order_status'], | |
trades=self.output_settings['trades']) | |
if self.output_settings['performance']: | |
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) | |
strats = cerebro.run() | |
first_strat = strats[0] | |
if self.output_settings['performance']: | |
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) | |
od_returns = first_strat.analyzers.getbyname('returns').get_analysis() | |
df_returns = pd.DataFrame(od_returns.items(), columns=['date', 'return']) | |
df_returns = df_returns.set_index('date') | |
self.stability = self.stability_of_timeseries(df_returns['return']) | |
if self.output_settings['performance']: | |
print('Performance:') | |
print('Return: ' + str((cerebro.broker.getvalue() - cash) / cash * 100) + '%') | |
print('Stability:' + str(self.stability)) | |
print('Top-5 Drawdowns:') | |
print(pf.show_worst_drawdown_periods(df_returns['return'], top=5)) | |
if self.output_settings['plot']: | |
# Read Close prices from csv and calculate the returns as a benchmark | |
capital_algo = np.cumprod(1.0 + df_returns['return']) * cash | |
benchmark_df = pd.read_csv(self.file_data) | |
benchmark_returns = benchmark_df['<CLOSE>'].pct_change() | |
capital_benchmark = np.cumprod(1.0 + benchmark_returns) * cash | |
df_returns['benchmark_return'] = benchmark_returns | |
# Plot Capital Curves | |
plt.figure(figsize=(12, 7)) | |
plt.plot(np.array(capital_algo), color='blue') | |
plt.plot(np.array(capital_benchmark), color='red') | |
plt.legend(['Algorithm', 'Buy & Hold']) | |
plt.title('Capital Curve') | |
plt.xlabel('Time') | |
plt.ylabel('Value') | |
plt.show() | |
# Plot Drawdown Underwater | |
plt.figure(figsize=(12, 7)) | |
pf.plot_drawdown_underwater(df_returns['return']).set_xlabel('Time') | |
plt.show() | |
# Plot Top-5 Drawdowns | |
plt.figure(figsize=(12, 7)) | |
pf.plot_drawdown_periods(df_returns['return'], top=5).set_xlabel('Time') | |
plt.show() | |
# Plot Simple Returns | |
plt.figure(figsize=(12, 7)) | |
plt.plot(df_returns['return'], 'blue') | |
plt.title('Returns') | |
plt.xlabel('Time') | |
plt.ylabel('Return') | |
plt.show() | |
# Plot Return Quantiles by Timeframe | |
plt.figure(figsize=(12, 7)) | |
pf.plot_return_quantiles(df_returns['return']).set_xlabel('Timeframe') | |
plt.show() | |
# Plot Monthly Returns Dist | |
plt.figure(figsize=(12, 7)) | |
pf.plot_monthly_returns_dist(df_returns['return']).set_xlabel('Returns') | |
plt.show() | |
# Determines R-squared of a linear fit to the cumulative log returns. Negative value means unprofitable result. | |
def stability_of_timeseries(self, returns): | |
if len(returns) < 2: | |
return np.nan | |
returns = np.asanyarray(returns) | |
returns = returns[~np.isnan(returns)] | |
cum_log_returns = np.log1p(returns).cumsum() | |
rhat = stats.linregress(np.arange(len(cum_log_returns)), | |
cum_log_returns)[2] | |
if cum_log_returns[0] < cum_log_returns[-1]: | |
return rhat ** 2 | |
else: | |
return -(rhat ** 2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment