Created
July 6, 2024 09:33
-
-
Save larsr/58aafd1d9a68db6c9752bb148fc22922 to your computer and use it in GitHub Desktop.
proof of plus associativity in a single gallina term
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Definition plus_assoc : forall a b, a + b = b + a := | |
nat_ind (fun n => forall b, n + b = b + n) | |
(nat_ind (fun n => n = n + 0) eq_refl (fun n => eq_S _ _)) | |
(fun n H b => eq_trans (eq_S _ _ (H b)) | |
(nat_ind (fun b => S (b + n) = b + S n) | |
eq_refl | |
(fun _ => eq_S _ _) b) : S (n + b) = b + S n). |
Author
larsr
commented
Jul 6, 2024
(*
Inductive eq (A : Type) (x : A) : A -> Prop := eq_refl : eq _ x x.
Notation "a = b" := (eq _ a b) (at level 70).
Arguments eq_refl {_ _}.
*)
Definition eq_trans : forall {A : Type} {x y z : A}, x = y -> y = z -> x = z :=
fun A x y z H1 H2 => match H1 in (_=a) return (a=z->x=z) with eq_refl => fun H=>H end H2.
Definition f_equal : forall {A B : Type} (f : A -> B) {x y : A}, x = y -> f x = f y :=
fun A B f x y H => match H in (_=a) return (f x = f a) with | eq_refl => eq_refl end.
(*
Inductive nat := O : nat | S (n:nat): nat.
Definition plus := fix plus a b := match a with | O => b | S a' => S (plus a' b) end.
Notation "a + b" := (plus a b).
*)
Definition nat_ind : forall P : nat -> Prop, P O -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n :=
fun P P0 IH => fix F n := match n with O => P0 | S n' => IH n' (F n') end.
Definition plus_assoc : forall a b, a + b = b + a :=
nat_ind (fun n => forall b, n + b = b + n)
(nat_ind (fun n => n = n + 0) eq_refl (fun _ => f_equal S))
(fun n H b => eq_trans (f_equal S (H b))
(nat_ind (fun b => S (b + n) = b + S n)
eq_refl
(fun _ => f_equal S) b) : S (n + b) = b + S n).
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment