Last active
November 12, 2015 05:08
-
-
Save laurakwiley/cafba2c579b6922c4956 to your computer and use it in GitHub Desktop.
AMIA 2015 Using R for Healthcare Data Science - Case Study 1 Shiny App
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(shiny) | |
shinyServer(function(input, output){ | |
library(dplyr) | |
library(tidyr) | |
input_model <- eventReactive(input$calc, { | |
data.frame(Age = input$age, | |
Race = input$race, | |
VKORC1 = input$vkorc1, | |
CYP2C9 = input$cyp2c9, | |
On_Amiodarone = input$amiodarone, | |
On_Enzyme_Inducers = input$enzyme_inducers) | |
}) | |
output$selectedvalues <- renderTable({input_model() %>% | |
gather(key = Variable, value = Selection)}) | |
output$warfarindose <- renderText({ | |
warfarin_model <- structure(list(term = c("intercept", "age_decades", "vkorc1_1639_ag", "vkorc1_1639_aa", "vkorc1_1639_unknown", "cyp2c9_1_2", "cyp2c9_1_3", "cyp2c9_2_2", "cyp2c9_2_3", "cyp2c9_3_3", "cyp2c9_unknown", "asian", "african_american", "missing_or_mixed_race", "amiodarone", "enzyme_inducers"), | |
estimate = c(8.29529623468211, -0.284625991543081, -0.804050018868126, -1.58281937447931, -0.585810870878652, -0.473767057887023, -0.901866452197908, -1.09125866824621, -1.87135980567376, -2.50972717609401, -0.389492614878111, -0.670801757840009, -0.0675483297437883, -0.348827044586359, -0.672182905952411, 0.54552327241645), | |
std.error = c(0.072079981014331, 0.0102560287706372, 0.0449131398786503, 0.0545551821972256, 0.0443661947089462, 0.0465310858226987, 0.0534852345292653, 0.150214643924848, 0.137395891813837, 0.244898760990986, 0.102165232807463, 0.0447428773165641, 0.0579547790963726, 0.0545341398105267, 0.0810398751212533, 0.224099351950369), | |
statistic = c(115.084606265821, -27.7520664097549, -17.9023337277369, -29.0131809798961, -13.2039917942416, -10.1817322658718, -16.8619706005858, -7.26466235071039, -13.6202020378406, -10.2480190832259, -3.81237926224998, -14.9923696925874, -1.16553510852768, -6.39648935141037, -8.29447114703323, 2.43429205693226), | |
p.value = c(0, 1.03038776788502e-158, 1.064652478523e-69, 2.79523401421071e-172, 3.29186868870607e-39, 3.92172887720116e-24, 3.11993851496051e-62, 4.26388815028701e-13, 1.43668477234196e-41, 2.00539244089927e-24, 0.00013914798310481, 7.94475752194028e-50, 0.24385325010913, 1.72192992300359e-10, 1.35992655573032e-16, 0.0149527114251593)), | |
.Names = c("term", "estimate", "std.error", "statistic", "p.value"), | |
row.names = c(NA, -16L), | |
class = "data.frame") | |
predicted_dose <- input_model() %>% | |
mutate(intercept = 1, | |
age_decades = as.numeric(substr(Age, 1, 1)), | |
vkorc1_1639_ag = ifelse(VKORC1 == "G/A", 1, 0), | |
vkorc1_1639_aa = ifelse(VKORC1 == "A/A", 1, 0), | |
vkorc1_1639_unknown = ifelse(VKORC1 == "Unknown", 1, 0), | |
cyp2c9_1_2 = ifelse(CYP2C9 == "*1/*2", 1, 0), | |
cyp2c9_1_3 = ifelse(CYP2C9 == "*1/*3", 1, 0), | |
cyp2c9_2_2 = ifelse(CYP2C9 == "*2/*2", 1, 0), | |
cyp2c9_2_3 = ifelse(CYP2C9 == "*2/*3", 1, 0), | |
cyp2c9_3_3 = ifelse(CYP2C9 == "*3/*3", 1, 0), | |
cyp2c9_unknown = ifelse(CYP2C9 == "Unknown", 1, 0), | |
asian = ifelse(Race == "Asian", 1, 0), | |
african_american = ifelse(Race == "African American", 1, 0), | |
missing_or_mixed_race = ifelse(Race == "Other or Unknown", 1, 0), | |
amiodarone = ifelse(On_Amiodarone, 1, 0), | |
enzyme_inducers = ifelse(On_Enzyme_Inducers, 1, 0)) %>% | |
select(-c(Age:On_Enzyme_Inducers)) %>% | |
gather(key = term, value = value) %>% | |
mutate(term = as.character(term)) %>% | |
inner_join(warfarin_model) %>% | |
mutate(weighted = value * estimate) %>% | |
summarise(round(sum(weighted)^2)) | |
paste0("Based on the values entered, the predicted warfarin dose is: ", predicted_dose, "mg per week, or ~", round(predicted_dose/7),"mg per day.") | |
}) | |
} | |
) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(shiny) | |
shinyUI( | |
pageWithSidebar( | |
headerPanel("Warfarin Pharmagenomic Dose Predictor"), | |
sidebarPanel(selectInput("age", "Age in Decades:", choices = c("10-19","20-29","30-39", "40-49", "50-59", "60-69", "70-79", "80-89", "90+")), | |
radioButtons("race", "Race:", choices = c( "Other or Unknown", "Asian", "African American", "White")), | |
radioButtons("vkorc1", "VKORC1 Genotype:", choices = c("Unknown", "G/G", "G/A", "A/A")), | |
radioButtons("cyp2c9", "CYP2C9 Genotype:", choices = c("Unknown", "*1/*2", "*1/*3", "*2/*2", "*2/*3", "*3/*3","Other")), | |
checkboxInput('amiodarone', "Taking Amiodarone", FALSE), | |
checkboxInput("enzyme_inducers", "Taking an Enzyme Inducer (rifampin, carbamazepine, phenytoin or rifampicin)", FALSE), | |
actionButton("calc","Calculate") | |
), | |
mainPanel( | |
strong(em("THIS IS A PROGRAMMING EXAMPLE ONLY - DO NOT USE FOR PATIENT CARE!")), | |
br(),br(), | |
strong(em("IF YOU HAVE QUESTIONS ABOUT YOUR WARFARIN DOSE, PLEASE CONTACT YOUR DOCTOR.")), | |
br(),br(), | |
p("You Selected: "), | |
tableOutput("selectedvalues"), | |
br(),br(), | |
textOutput("warfarindose") | |
) | |
) | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment