Created
November 16, 2021 08:02
-
-
Save lefuturiste/87c78e514bb2efb9cee923c35b17c014 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import math | |
import random | |
import pprint | |
import json | |
import jsbeautifier | |
def generate_points(n=100): | |
X = [] | |
Y = [] | |
for i in range(n): | |
X.append(random.random()) | |
Y.append(random.random()) | |
plt.plot(X, Y, '.') | |
return [(X[i],Y[i]) for i in range(n)] | |
# def angle(p1, p2, p3): | |
# p1, p2, p3 = p3, p2, p1 | |
# print(p1, p2, p3) | |
# if p1 == p3: return math.pi | |
# x1, y1 = p2[0]-p1[0], p2[1]-p1[1] | |
# x2, y2 = p3[0]-p2[0], p3[1]-p2[1] | |
# d = x1*y2-y1*x2 | |
# n1 = math.hypot(x1, y1) | |
# n2 = math.hypot(x2, y2) | |
# if d == 0 or n1*n2 == 0: | |
# l = x1/x2 | |
# if l >= 0: return 0 | |
# return math.pi | |
# dp = x1*x2 + y1*y2 | |
# c = math.acos(dp/(n1*n2)) | |
# b = (c if d > 0 else -c) % 2*math.pi | |
# return math.pi*2-b | |
def cross_product(u, v): | |
x1, y1 = u | |
x2, y2 = v | |
n1 = math.hypot(x1, y1) | |
n2 = math.hypot(x2, y2) | |
return (x1*y2-x2*y1) | |
# def angle(p1, p2, p3): | |
# x1, y1 = p2[0]-p1[0], p2[1]-p1[1] | |
# x2, y2 = p3[0]-p2[0], p3[1]-p2[1] | |
# a = (math.atan2(y1, x1) - math.atan2(y2, x2)) | |
# if a < 0: | |
# a = math.pi | |
# return a | |
def gift_wrapping(points): | |
convex_hull = [] | |
x_sorted = list(sorted(points, key=lambda point: point[0])) | |
left_most = x_sorted[0] | |
point_on_hull = left_most | |
endpoint = None | |
while endpoint != left_most: | |
convex_hull.append(point_on_hull) | |
endpoint = points[0] | |
for point in points: | |
cp = cross_product(( | |
endpoint[0] - point_on_hull[0], | |
endpoint[1] - point_on_hull[1] | |
), ( | |
point[0] - point_on_hull[0], | |
point[1] - point_on_hull[1] | |
)) | |
if endpoint == point_on_hull or cp < 0: | |
endpoint = point | |
point_on_hull = endpoint | |
return convex_hull | |
def draw_points(points, with_edge=False): | |
X, Y = [], [] | |
for p in points: | |
X.append(p[0]) | |
Y.append(p[1]) | |
plt.plot(X, Y, '.' if not with_edge else '') | |
pts = generate_points(50) | |
#pts = [(0.1, 1), (0.2, 0.4), (0.2, 0.15), (0.4, 0.25), (0.6, 0.8), (0.55, 0.3), (0.7, 0.2), (0.5, 0.5), (0.4, 0.7), (0.3, 0.1)] | |
print(pts) | |
draw_points(pts) | |
hull=gift_wrapping(pts) | |
draw_points(hull+[hull[0]], True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment