Last active
September 1, 2024 22:36
-
-
Save leodemoura/679ce708cb0f67e8c31bdfa8b093f5ec to your computer and use it in GitHub Desktop.
smul_comp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
theorem CategoryTheory.Linear.smul_comp.{w, v₁, u₁} : ∀ {R : Type w} [inst : Semiring R] {C : Type u₁} | |
[inst_1 : CategoryTheory.Category C] [inst_2 : @CategoryTheory.Preadditive C inst_1] | |
[self : @CategoryTheory.Linear R inst C inst_1 inst_2] (X Y Z : C) (r : R) | |
(f : | |
@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y) | |
(g : | |
@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) Y Z), | |
@Eq | |
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z) | |
(@CategoryTheory.CategoryStruct.comp C (@CategoryTheory.Category.toCategoryStruct C inst_1) X Y Z | |
(@HSMul.hSMul R | |
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) | |
X Y) | |
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) | |
X Y) | |
(@instHSMul R | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y) | |
(@MulAction.toSMul R | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y) | |
(@Semiring.toMulOneClass R inst) | |
(@DistribMulAction.toMulAction R | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y) | |
(@Semiring.toMulOneClass R inst) | |
(@AddGroup.toAddMonoid | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y) | |
(@CategoryTheory.Preadditive.homGroup C inst_1 inst_2 X Y)) | |
(@Module.toDistribMulAction R | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y) | |
inst | |
(@AddGroup.toAddMonoid | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X | |
Y) | |
(@CategoryTheory.Preadditive.homGroup C inst_1 inst_2 X Y)) | |
(@CategoryTheory.Linear.homModule R inst C inst_1 inst_2 self X Y))))) | |
r f) | |
g) | |
(@HSMul.hSMul R | |
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X | |
Z) | |
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X | |
Z) | |
(@instHSMul R | |
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) | |
X Z) | |
(@MulAction.toSMul R | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z) | |
(@Semiring.toMulOneClass R inst) | |
(@DistribMulAction.toMulAction R | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z) | |
(@Semiring.toMulOneClass R inst) | |
(@AddGroup.toAddMonoid | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z) | |
(@CategoryTheory.Preadditive.homGroup C inst_1 inst_2 X Z)) | |
(@Module.toDistribMulAction R | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z) | |
inst | |
(@AddGroup.toAddMonoid | |
(@Quiver.Hom C | |
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z) | |
(@CategoryTheory.Preadditive.homGroup C inst_1 inst_2 X Z)) | |
(@CategoryTheory.Linear.homModule R inst C inst_1 inst_2 self X Z))))) | |
r (@CategoryTheory.CategoryStruct.comp C (@CategoryTheory.Category.toCategoryStruct C inst_1) X Y Z f g)) := | |
fun (R : Type w) [inst : Semiring R] (C : Type u₁) [inst_1 : CategoryTheory.Category C] | |
[inst_2 : @CategoryTheory.Preadditive C inst_1] [self : @CategoryTheory.Linear R inst C inst_1 inst_2] => | |
self.2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment