Skip to content

Instantly share code, notes, and snippets.

@leodemoura
Last active September 1, 2024 22:36
Show Gist options
  • Save leodemoura/679ce708cb0f67e8c31bdfa8b093f5ec to your computer and use it in GitHub Desktop.
Save leodemoura/679ce708cb0f67e8c31bdfa8b093f5ec to your computer and use it in GitHub Desktop.
smul_comp
theorem CategoryTheory.Linear.smul_comp.{w, v₁, u₁} : ∀ {R : Type w} [inst : Semiring R] {C : Type u₁}
[inst_1 : CategoryTheory.Category C] [inst_2 : @CategoryTheory.Preadditive C inst_1]
[self : @CategoryTheory.Linear R inst C inst_1 inst_2] (X Y Z : C) (r : R)
(f :
@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y)
(g :
@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) Y Z),
@Eq
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z)
(@CategoryTheory.CategoryStruct.comp C (@CategoryTheory.Category.toCategoryStruct C inst_1) X Y Z
(@HSMul.hSMul R
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1))
X Y)
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1))
X Y)
(@instHSMul R
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y)
(@MulAction.toSMul R
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y)
(@Semiring.toMulOneClass R inst)
(@DistribMulAction.toMulAction R
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y)
(@Semiring.toMulOneClass R inst)
(@AddGroup.toAddMonoid
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y)
(@CategoryTheory.Preadditive.homGroup C inst_1 inst_2 X Y))
(@Module.toDistribMulAction R
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Y)
inst
(@AddGroup.toAddMonoid
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X
Y)
(@CategoryTheory.Preadditive.homGroup C inst_1 inst_2 X Y))
(@CategoryTheory.Linear.homModule R inst C inst_1 inst_2 self X Y)))))
r f)
g)
(@HSMul.hSMul R
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X
Z)
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X
Z)
(@instHSMul R
(@Quiver.Hom C (@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1))
X Z)
(@MulAction.toSMul R
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z)
(@Semiring.toMulOneClass R inst)
(@DistribMulAction.toMulAction R
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z)
(@Semiring.toMulOneClass R inst)
(@AddGroup.toAddMonoid
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z)
(@CategoryTheory.Preadditive.homGroup C inst_1 inst_2 X Z))
(@Module.toDistribMulAction R
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z)
inst
(@AddGroup.toAddMonoid
(@Quiver.Hom C
(@CategoryTheory.CategoryStruct.toQuiver C (@CategoryTheory.Category.toCategoryStruct C inst_1)) X Z)
(@CategoryTheory.Preadditive.homGroup C inst_1 inst_2 X Z))
(@CategoryTheory.Linear.homModule R inst C inst_1 inst_2 self X Z)))))
r (@CategoryTheory.CategoryStruct.comp C (@CategoryTheory.Category.toCategoryStruct C inst_1) X Y Z f g)) :=
fun (R : Type w) [inst : Semiring R] (C : Type u₁) [inst_1 : CategoryTheory.Category C]
[inst_2 : @CategoryTheory.Preadditive C inst_1] [self : @CategoryTheory.Linear R inst C inst_1 inst_2] =>
self.2
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment