Created
January 17, 2025 23:52
-
-
Save liangfu/1f644bcaa07433eadb6ec89e8566caba to your computer and use it in GitHub Desktop.
Evaluate stochastic rounding
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import time | |
import torch | |
import torch_xla.core.xla_model as xm | |
N = 16 | |
def main(): | |
# os.environ["XLA_USE_BF16"] = "1" | |
os.environ["NEURON_RT_STOCHASTIC_ROUNDING_EN"] = "1" | |
os.environ["NEURON_CC_FLAGS"] = " --internal-hlo2tensorizer-options=--experimental-unsafe-fp8e4m3fn-as-fp8e4m3 --execute-repetition=1 " | |
device = xm.xla_device() | |
data = torch.arange(N).reshape(1,N).expand(32,N).to(device=device) * 2 | |
print(f"{data=}") | |
# output = (data / float(N)).to(dtype=torch.float8_e4m3fn) | |
output_fp32 = (data / float(N)).to(dtype=torch.float32) * 3.11111 | |
print(f"{output_fp32=}") | |
output_bf16 = output_fp32.to(dtype=torch.bfloat16) | |
print(f"{output_bf16=}") | |
output_fp8e4m3 = output_fp32.to(dtype=torch.float8_e4m3fn) | |
print(f"{output_fp8e4m3=}") | |
if __name__=="__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment