Last active
September 10, 2024 19:46
-
-
Save linar-jether/95ff412f9d19fdf5e51293eb0c09b850 to your computer and use it in GitHub Desktop.
Grafana python datasource - using pandas for timeseries and table data. inspired by and compatible with the simple json datasource ---- Up-to-date version maintained @ https://github.com/panodata/grafana-pandas-datasource
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from flask import Flask, request, jsonify, json, abort | |
from flask_cors import CORS, cross_origin | |
import pandas as pd | |
app = Flask(__name__) | |
cors = CORS(app) | |
app.config['CORS_HEADERS'] = 'Content-Type' | |
methods = ('GET', 'POST') | |
metric_finders= {} | |
metric_readers = {} | |
annotation_readers = {} | |
panel_readers = {} | |
def add_reader(name, reader): | |
metric_readers[name] = reader | |
def add_finder(name, finder): | |
metric_finders[name] = finder | |
def add_annotation_reader(name, reader): | |
annotation_readers[name] = reader | |
def add_panel_reader(name, reader): | |
panel_readers[name] = reader | |
@app.route('/', methods=methods) | |
@cross_origin() | |
def hello_world(): | |
print request.headers, request.get_json() | |
return 'Jether\'s python Grafana datasource, used for rendering HTML panels and timeseries data.' | |
@app.route('/search', methods=methods) | |
@cross_origin() | |
def find_metrics(): | |
print request.headers, request.get_json() | |
req = request.get_json() | |
target = req.get('target', '*') | |
if ':' in target: | |
finder, target = target.split(':', 1) | |
else: | |
finder = target | |
if not target or finder not in metric_finders: | |
metrics = [] | |
if target == '*': | |
metrics += metric_finders.keys() + metric_readers.keys() | |
else: | |
metrics.append(target) | |
return jsonify(metrics) | |
else: | |
return jsonify(list(metric_finders[finder](target))) | |
def dataframe_to_response(target, df, freq=None): | |
response = [] | |
if df.empty: | |
return response | |
if freq is not None: | |
orig_tz = df.index.tz | |
df = df.tz_convert('UTC').resample(rule=freq, label='right', closed='right', how='mean').tz_convert(orig_tz) | |
if isinstance(df, pd.Series): | |
response.append(_series_to_response(df, target)) | |
elif isinstance(df, pd.DataFrame): | |
for col in df: | |
response.append(_series_to_response(df[col], target)) | |
else: | |
abort(404, Exception('Received object is not a dataframe or series.')) | |
return response | |
def dataframe_to_json_table(target, df): | |
response = [] | |
if df.empty: | |
return response | |
if isinstance(df, pd.DataFrame): | |
response.append({'type': 'table', | |
'columns': df.columns.map(lambda col: {"text": col}).tolist(), | |
'rows': df.where(pd.notnull(df), None).values.tolist()}) | |
else: | |
abort(404, Exception('Received object is not a dataframe.')) | |
return response | |
def annotations_to_response(target, df): | |
response = [] | |
# Single series with DatetimeIndex and values as text | |
if isinstance(df, pd.Series): | |
for timestamp, value in df.iteritems(): | |
response.append({ | |
"annotation": target, # The original annotation sent from Grafana. | |
"time": timestamp.value // 10 ** 6, # Time since UNIX Epoch in milliseconds. (required) | |
"title": value, # The title for the annotation tooltip. (required) | |
#"tags": tags, # Tags for the annotation. (optional) | |
#"text": text # Text for the annotation. (optional) | |
}) | |
# Dataframe with annotation text/tags for each entry | |
elif isinstance(df, pd.DataFrame): | |
for timestamp, row in df.iterrows(): | |
annotation = { | |
"annotation": target, # The original annotation sent from Grafana. | |
"time": timestamp.value // 10 ** 6, # Time since UNIX Epoch in milliseconds. (required) | |
"title": row.get('title', ''), # The title for the annotation tooltip. (required) | |
} | |
if 'text' in row: | |
annotation['text'] = str(row.get('text')) | |
if 'tags' in row: | |
annotation['tags'] = str(row.get('tags')) | |
response.append(annotation) | |
else: | |
abort(404, Exception('Received object is not a dataframe or series.')) | |
return response | |
def _series_to_annotations(df, target): | |
if df.empty: | |
return {'target': '%s' % (target), | |
'datapoints': []} | |
sorted_df = df.dropna().sort_index() | |
timestamps = (sorted_df.index.astype(pd.np.int64) // 10 ** 6).values.tolist() | |
values = sorted_df.values.tolist() | |
return {'target': '%s' % (df.name), | |
'datapoints': zip(values, timestamps)} | |
def _series_to_response(df, target): | |
if df.empty: | |
return {'target': '%s' % (target), | |
'datapoints': []} | |
sorted_df = df.dropna().sort_index() | |
try: | |
timestamps = (sorted_df.index.astype(pd.np.int64) // 10 ** 6).values.tolist() # New pandas version | |
except: | |
timestamps = (sorted_df.index.astype(pd.np.int64) // 10 ** 6).tolist() | |
values = sorted_df.values.tolist() | |
return {'target': '%s' % (df.name), | |
'datapoints': zip(values, timestamps)} | |
@app.route('/query', methods=methods) | |
@cross_origin(max_age=600) | |
def query_metrics(): | |
print request.headers, request.get_json() | |
req = request.get_json() | |
results = [] | |
ts_range = {'$gt': pd.Timestamp(req['range']['from']).to_pydatetime(), | |
'$lte': pd.Timestamp(req['range']['to']).to_pydatetime()} | |
if 'intervalMs' in req: | |
freq = str(req.get('intervalMs')) + 'ms' | |
else: | |
freq = None | |
for target in req['targets']: | |
if ':' not in target.get('target', ''): | |
abort(404, Exception('Target must be of type: <finder>:<metric_query>, got instead: ' + target['target'])) | |
req_type = target.get('type', 'timeserie') | |
finder, target = target['target'].split(':', 1) | |
query_results = metric_readers[finder](target, ts_range) | |
if req_type == 'table': | |
results.extend(dataframe_to_json_table(target, query_results)) | |
else: | |
results.extend(dataframe_to_response(target, query_results, freq=freq)) | |
return jsonify(results) | |
@app.route('/annotations', methods=methods) | |
@cross_origin(max_age=600) | |
def query_annotations(): | |
print request.headers, request.get_json() | |
req = request.get_json() | |
results = [] | |
ts_range = {'$gt': pd.Timestamp(req['range']['from']).to_pydatetime(), | |
'$lte': pd.Timestamp(req['range']['to']).to_pydatetime()} | |
query = req['annotation']['query'] | |
if ':' not in query: | |
abort(404, Exception('Target must be of type: <finder>:<metric_query>, got instead: ' + query)) | |
finder, target = query.split(':', 1) | |
results.extend(annotations_to_response(query, annotation_readers[finder](target, ts_range))) | |
return jsonify(results) | |
@app.route('/panels', methods=methods) | |
@cross_origin() | |
def get_panel(): | |
print request.headers, request.get_json() | |
req = request.args | |
ts_range = {'$gt': pd.Timestamp(int(req['from']), unit='ms').to_pydatetime(), | |
'$lte': pd.Timestamp(int(req['to']), unit='ms').to_pydatetime()} | |
query = req['query'] | |
if ':' not in query: | |
abort(404, Exception('Target must be of type: <finder>:<metric_query>, got instead: ' + query)) | |
finder, target = query.split(':', 1) | |
return panel_readers[finder](target, ts_range) | |
if __name__ == '__main__': | |
# Sample annotation reader : add_annotation_reader('midnights', lambda query_string, ts_range: pd.Series(index=pd.date_range(ts_range['$gt'], ts_range['$lte'], freq='D', normalize=True)).fillna('Text for annotation - midnight')) | |
# Sample timeseries reader : | |
# def get_sine(freq, ts_range): | |
# freq = int(freq) | |
# ts = pd.date_range(ts_range['$gt'], ts_range['$lte'], freq='H') | |
# return pd.Series(np.sin(np.arange(len(ts)) * np.pi * freq * 2 / float(len(ts))), index=ts).to_frame('value') | |
# add_reader('sine_wave', get_sine) | |
# To query the wanted reader, use `<reader_name>:<query_string>`, e.g. 'sine_wave:24' | |
app.run(host='0.0.0.0', port=3003, debug=True) |
Hi @tvirmani,
let us know if you have any problems to get grafana-pandas-datasource working. If you find any flaws, please report them on its issue tracker.
With kind regards,
Andreas.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
TypeError: DataFrame.resample() got an unexpected keyword argument 'how'
if I use create_app() it doesn't give this error but any print('test',flush=True) doesn't print anything on console .I tried debugger and many forms of print ..but failed . Now i can run this app but fail to understand the flow using print . Is it must of use create_app() function in code .
How can I now print values on console using print Any suggestions ?