Created
May 17, 2018 00:11
-
-
Save lubosz/fb957e4707d857521a96fc24ebbe75cd to your computer and use it in GitHub Desktop.
Example that shows how torch saves more float precision than it prints by default
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import torch | |
from torch.autograd import Variable | |
import numpy as np | |
def load_embeddings(count): | |
word_embeddings = {} | |
with open('2014_tudarmstadt_german_100mincount.vocab', 'r') as f: | |
for line in f: | |
line_list = line.strip().split(" ") | |
word = line_list[0] | |
word_embeddings[word] = line_list[1:] | |
if len(word_embeddings) >= count: | |
return word_embeddings | |
if __name__ == "__main__": | |
embeddings = load_embeddings(100) | |
for word, vector_str in embeddings.items(): | |
print("++ %s ++" % word) | |
vector_float = [float(s) for s in vector_str] | |
vector_np = np.array(vector_float) | |
vector_torch = torch.from_numpy(vector_np) | |
vector_torch_list = vector_torch.tolist() | |
print("strings", vector_str[:5]) | |
print("floats ", vector_float[:5]) | |
print("numpy ", vector_np[:5]) | |
print("torch ", vector_torch[:5]) | |
print("torch l", vector_torch_list[:5]) | |
for i in range(100): | |
number_str = vector_str[i] | |
number_float = vector_float[i] | |
number_np = vector_np[i] | |
number_torch = vector_torch_list[i] | |
assert(number_str == str(number_float)) | |
assert(number_str == str(number_np)) | |
assert(number_str == str(number_torch)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment