Last active
October 29, 2018 16:58
-
-
Save lukmanr/4bb2d9c53df0133930f325fe7a1845ad to your computer and use it in GitHub Desktop.
TF Model Optimization code 1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import os | |
import numpy as np | |
from datetime import datetime | |
import sys | |
import tensorflow as tf | |
from tensorflow import data | |
from tensorflow.python.saved_model import tag_constants | |
from tensorflow.python.tools import freeze_graph | |
from tensorflow.python import ops | |
from tensorflow.tools.graph_transforms import TransformGraph | |
NUM_CLASSES = 10 | |
MODELS_LOCATION = 'models/mnist' | |
MODEL_NAME = 'keras_classifier' | |
def load_mnist_keras(): | |
(train_data, train_labels), (eval_data, eval_labels) = tf.keras.datasets.mnist.load_data() | |
return train_data, train_labels, eval_data, eval_labels | |
def keras_model_fn(params): | |
inputs = tf.keras.layers.Input(shape=(28, 28), name='input_image') | |
input_layer = tf.keras.layers.Reshape(target_shape=(28, 28, 1), name='reshape')(inputs) | |
# convolutional layers | |
conv_inputs = input_layer | |
for i in range(params.num_conv_layers): | |
filters = params.init_filters * (2**i) | |
conv = tf.keras.layers.Conv2D(kernel_size=3, filters=filters, strides=1, padding='SAME', activation='relu')(conv_inputs) | |
max_pool = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='SAME')(conv) | |
batch_norm = tf.keras.layers.BatchNormalization()(max_pool) | |
conv_inputs = batch_norm | |
flatten = tf.keras.layers.Flatten(name='flatten')(conv_inputs) | |
# fully-connected layers | |
dense_inputs = flatten | |
for i in range(len(params.hidden_units)): | |
dense = tf.keras.layers.Dense(units=params.hidden_units[i], activation='relu')(dense_inputs) | |
dropout = tf.keras.layers.Dropout(params.dropout)(dense) | |
dense_inputs = dropout | |
# softmax classifier | |
logits = tf.keras.layers.Dense(units=NUM_CLASSES, name='logits')(dense_inputs) | |
softmax = tf.keras.layers.Activation('softmax', name='softmax')(logits) | |
# keras model | |
model = tf.keras.models.Model(inputs, softmax) | |
return model | |
def create_estimator_keras(params, run_config): | |
keras_model = keras_model_fn(params) | |
print(keras_model.summary()) | |
optimizer = tf.keras.optimizers.Adam(lr=params.learning_rate) | |
keras_model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) | |
mnist_classifier = tf.keras.estimator.model_to_estimator( | |
keras_model=keras_model, | |
config=run_config | |
) | |
return mnist_classifier |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment