Created
March 5, 2019 07:03
-
-
Save manuzhang/d1bfd477f140956096df134edd5df5e8 to your computer and use it in GitHub Desktop.
Monitor CPU and memory usage from Spark master UI
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
from bs4 import BeautifulSoup | |
import requests | |
page = requests.get("http://spark-master.com").content | |
soup = BeautifulSoup(page, 'html.parser') | |
cores_text = soup.find('strong', string='Cores in use:').next_sibling | |
cores_parts = cores_text.strip().split('\n') | |
total_cores = float(cores_parts[0].strip().split(' ')[0]) | |
used_cores = float(cores_parts[1].strip().split(' ')[0]) | |
cpu_usage = used_cores / total_cores | |
print(cpu_usage) | |
memory_text = soup.find('strong', string='Memory in use:').next_sibling | |
memory_parts = memory_text.strip().split('\n') | |
def get_memory(text): | |
parts = text.split(' ') | |
if (parts[1] == 'TB'): | |
return float(parts[0]) * 1024 | |
else: | |
return float(parts[0]) | |
memory_total = get_memory(memory_parts[0].strip()) | |
memory_used = get_memory(memory_parts[1].strip()) | |
memory_usage = memory_used / memory_total | |
print(memory_usage) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment