library(dplyr)
library(haven)
path <- system.file("examples", "iris.sav", package = "haven")
df <- read_sav(path)
head(df, 3)
#> # A tibble: 3 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <dbl+lbl>
#> 1 5.1 3.5 1.4 0.2 1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- | |
output: | |
html_document: | |
theme: cerulean | |
--- | |
### Example html multiple choice question using Rmarkdown | |
<!-- Render this Rmarkdown doc to html to make an interactive html / js multiple choice question --> |
library(tidyverse)
library(TAM)
#> Loading required package: CDM
#> Loading required package: mvtnorm
#> **********************************
#> ** CDM 6.2-91 (2018-05-02 17:29:27)
#> ** Cognitive Diagnostic Models **
#> **********************************
#> * TAM 2.12-18 (2018-05-25 11:14:38)
Free estimation (no anchors) using ConQuest gives the following item parameters for a 9 item test.
x <- c(0.39, -1.485, -1.138, -0.089, 0.901, 0.558, 0.225, -0.105, 0.743)
Next we add 3 logits to q1 through q5 and make q1 to q5 item anchors. q6 to q9 then still need to be calibrated. These are the results when:
anchored with set constraint = none;
Does this do what you need?
#data for Paper
Paper <- c(1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9 )
#data for selectedES.prepost
selectedES.prepost <- c(0.0048, -0.1420, -0.3044, -1.3024, -0.4052, -0.6066, -0.1961, -1.1187, -0.4585, -0.8251, -0.5328, -1.3623, -0.5450, -0.4982, -0.5714, -0.8793, -0.3677, -0.3976, -0.6136, -0.7047, -0.8580, -0.5024, -0.8018, -0.8927, -0.3106, -0.5893, -0.6677, -1.6663, -1.1769, -0.8384, -0.5632, -0.5237, -0.3458, -0.9957, -0.5331, -0.7413, -0.0311, -0.4936, 0.5422, -0.0340)
#creating a test dataset
library(tidyverse)
library(conquestr)
df <- cq_example(display = FALSE) %>% cq_itanal() %>%
select(-data)
df1 <- df %>% select(item_index:delta)
df2 <- df %>%
mutate(resp_id = id) %>%
select(item_index, resp_id, resp_stat) %>%
library(conquestr)
library(tidyverse)
mydir <- "C:\\Users\\Mark\\Downloads"
myitanal <- cq_itanal(paste0(mydir, "\\Num_Y3.itn"))
myshow <- cq_show(paste0(mydir, "\\Num_Y3.shw"), fit = FALSE)
write_csv(myshow, paste0(mydir, "\\show.csv"))
myitanal %>%
select(-c(data, resp_stat)) %>%
From Ben Fitzpatrick. Gist adapted from Nicholas Tierney's
library(tidyverse)
ci <- c('11% - 20%', '21% - 30%', '0% - 9%')
ci %>%
as_tibble() %>%
extract(value, c("Lw", "Up"), "([0-9]+)% - ([0-9]+)%", convert = TRUE)
#> # A tibble: 3 x 2
#> Lw Up