Created
November 19, 2022 12:57
-
-
Save marta-sd/a19bbbc8b3322ae86425622edd2a7773 to your computer and use it in GitHub Desktop.
Example of using backward hooks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
class Net(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.l1 = nn.Sequential(nn.Linear(8, 64), nn.ReLU(), nn.Linear(64, 2)) | |
self.l2 = nn.Sequential(nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 2)) | |
self.relu = nn.ReLU() | |
def forward(self, x, y): | |
x = self.l1(x) | |
y = self.l2(y) | |
return self.relu(x+y) | |
net = Net() | |
def hook(module, grad_inputs, grad_outputs): | |
print('inputs') | |
for inp in grad_inputs: | |
print(inp if inp is None else inp.mean()) | |
print('outputs') | |
for out in grad_outputs: | |
print(out if out is None else out.mean()) | |
handle = net.register_full_backward_hook(hook) | |
out = net(torch.rand((2,8)), torch.rand((2, 64))) | |
(1 - out.mean()).backward() | |
handle.remove() | |
def hook_factory(name): | |
def hook(module, grad_inputs, grad_outputs): | |
print(name) | |
print('inputs') | |
for inp in grad_inputs: | |
print(inp if inp is None else inp.mean()) | |
print('outputs') | |
for out in grad_outputs: | |
print(out if out is None else out.mean()) | |
return hook | |
handles = [] | |
for name, module in net.named_children(): | |
hook = hook_factory(name) | |
handle = module.register_full_backward_hook(hook) | |
handles.append(handle) | |
print('registered hook for', name) | |
out = net(torch.rand((2,8)), torch.rand((2, 64))) | |
(1 - out.mean()).backward() | |
for h in handles: | |
h.remove() | |
handles = [] | |
for name, module in net.named_modules(): | |
hook = hook_factory(name) | |
handle = module.register_full_backward_hook(hook) | |
handles.append(handle) | |
print('registered hook for', name) | |
out = net(torch.rand((2,8)), torch.rand((2, 64))) | |
(1 - out.mean()).backward() | |
for h in handles: | |
h.remove() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment