Created
February 13, 2024 05:47
-
-
Save martinkozle/8e1c5be0ec75f60052b3239081667a89 to your computer and use it in GitHub Desktop.
GTA 5 MAX INT Billionaire
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import heapq | |
from collections import defaultdict | |
from dataclasses import dataclass, field | |
from enum import Enum, auto | |
class Step(Enum): | |
A = auto() | |
B = auto() | |
C = auto() | |
@dataclass | |
class Billionaire: | |
stop_condition: int | |
time: int = 0 | |
money: int = 0 | |
glitch_gain: int = 0 | |
steps: list[Step] = field(default_factory=list) | |
@property | |
def is_stop_condition_met(self) -> bool: | |
return self.money >= self.stop_condition | |
def repr_without_steps(self) -> str: | |
return ( | |
f"Billionaire(time={self.time}, money={self.money}" | |
f", glitch_gain={self.glitch_gain})" | |
) | |
def repr_with_steps(self) -> str: | |
# Steps use keys from the Step enum | |
steps_str = ", ".join([step.name for step in self.steps]) | |
return ( | |
f"Billionaire(time={self.time}, money={self.money}" | |
f", glitch_gain={self.glitch_gain}, steps={steps_str})" | |
) | |
def perform_a(self) -> "Billionaire": | |
return Billionaire( | |
stop_condition=self.stop_condition, | |
time=self.time + 51, | |
money=self.money + 25_000, | |
glitch_gain=self.glitch_gain, | |
steps=[*self.steps, Step.A], | |
) | |
def perform_b(self) -> "Billionaire": | |
return Billionaire( | |
stop_condition=self.stop_condition, | |
time=self.time + 120, | |
money=self.money, | |
glitch_gain=self.money, | |
steps=[*self.steps, Step.B], | |
) | |
def perform_c(self) -> "Billionaire": | |
return Billionaire( | |
stop_condition=self.stop_condition, | |
time=self.time + 18, | |
money=self.money + self.glitch_gain, | |
glitch_gain=self.glitch_gain, | |
steps=[*self.steps, Step.C], | |
) | |
def __lt__(self, other: "Billionaire") -> bool: | |
return self.time < other.time | |
def calculate(target: int) -> list[Billionaire]: | |
initial_state = Billionaire(stop_condition=target) | |
priority_queue: list[Billionaire] = [initial_state] | |
dp: dict[int, Billionaire | None] = defaultdict(lambda: None) | |
max_time: int = 0 | |
heapq.heapify(priority_queue) | |
heapq.heappush(priority_queue, initial_state) | |
best_billionaires: list[Billionaire] = [ | |
Billionaire(stop_condition=target, money=target, time=2**63) | |
] | |
while len(priority_queue) > 0: | |
current_state = heapq.heappop(priority_queue) | |
if current_state.is_stop_condition_met: | |
if current_state.time < best_billionaires[0].time: | |
best_billionaires = [current_state] | |
elif current_state.time == best_billionaires[0].time: | |
best_billionaires.append(current_state) | |
continue | |
if current_state.time > best_billionaires[0].time: | |
continue | |
a = current_state.perform_a() | |
b = current_state.perform_b() | |
c = current_state.perform_c() if current_state.glitch_gain > 0 else None | |
for new_billionaire in (a, b, c): | |
if new_billionaire is None: | |
continue | |
best_at_time = dp[new_billionaire.time] | |
if ( | |
best_at_time is not None | |
and best_at_time.money > new_billionaire.money | |
and best_at_time.glitch_gain > new_billionaire.glitch_gain | |
): | |
continue | |
max_time = max(max_time, new_billionaire.time) | |
for i in range(new_billionaire.time, max_time + 1): | |
older_billionaire = dp[i] | |
if older_billionaire is not None and ( | |
older_billionaire.glitch_gain > new_billionaire.glitch_gain | |
or older_billionaire.money > new_billionaire.money | |
): | |
break | |
dp[i] = new_billionaire | |
heapq.heappush(priority_queue, new_billionaire) | |
return best_billionaires | |
if __name__ == "__main__": | |
TARGET_MONEY = 2**31 - 1 | |
billionaires = calculate(TARGET_MONEY) | |
print(f"Number of billionaires: {len(billionaires)}") | |
for billionaire in billionaires: | |
print(billionaire.repr_with_steps()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment