Last active
December 13, 2021 02:47
-
-
Save matthewshawnkehoe/07c3efbd42cc4f1bec39df2cd948d098 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% field_tfe_helmholtz_m_and_n.m | |
% Calculates field data in the upper layer for the TFE method (2d): Small perturbation. | |
function [unm] = field_tfe_helmholtz_m_and_n(... | |
xi_n_m,f,p,gammap,alpha,gamma,Dz,a,Nx,Nz,N,M,identy) | |
% MSK 7/26/21: Changed the size of unm from (Nx,Nz+1,N+1,M+1) to (Nx,Nz+1,M+1,N+1) | |
% MSK 7/26/21: xi_n_m should be size (Nx,M+1,N+1); | |
% MSK 7/30/21: Vectorized (most of) j loop | |
unm = zeros(Nx,Nz+1,M+1,N+1); | |
k2 = p(0+1)^2 + gammap(0+1)^2; | |
ell_top = 0 + 1; | |
xi_n_m_hat = 0*xi_n_m; | |
for n=0:N | |
for m=0:M | |
xi_n_m_hat(:,m+1,n+1) = fft( xi_n_m(:,m+1,n+1) ); | |
end | |
end | |
f_x = real(ifft( (1i*p).*fft(f) )); | |
ll = [0:Nz]'; | |
z_min = 0; z_max = a; | |
% MSK 7/22/21 - Parameters for solvebvp_colloc | |
D = (2/(z_max-z_min))*Dz; | |
D2 = D*D; | |
D_start = D(1,:); | |
D_end = D(end,:); | |
% End MSK 7/22/21 | |
tilde_z = cos(pi*ll/Nz); | |
z = ((z_max-z_min)/2.0)*(tilde_z - 1.0) + z_max; | |
f_full = repmat(f,1,Nz+1); | |
f_x_full = repmat(f_x,1,Nz+1); | |
a_minus_z_full = repmat(a - z.',Nx,1); | |
Uhat = zeros(Nx,Nz+1); | |
Tw = Tw_dno(alpha,p,gamma,gammap,k2,Nx,M); | |
% n=0 and m=0 | |
for ell=0:Nz | |
unm(:,ell+1,0+1,0+1) = ifft( exp(1i*gammap*z(ell+1)).*xi_n_m_hat(:,0+1,0+1) ); | |
end | |
A1_xx = -(2.0/a)*f_full; | |
A1_xz = -(1.0/a)*(a_minus_z_full).*f_x_full; | |
A1_zx = A1_xz; | |
%A1_zz = 0; | |
A2_xx = (1.0/a^2)*f_full.^2; | |
A2_xz = (1.0/a^2)*(a_minus_z_full).*(f_full.*f_x_full); | |
A2_zx = A2_xz; | |
A2_zz = (1.0/a^2)*((a_minus_z_full).^2).*(f_x_full.^2); | |
B1_x = (1.0/a)*f_x_full; | |
%B1_z = 0; | |
B2_x = -(1.0/a^2)*f_full.*f_x_full; | |
B2_z = -(1.0/a^2).*(a_minus_z_full).*(f_x_full.^2); | |
S1 = -(2.0/a)*f_full; | |
S2 = (1.0/a^2)*f_full.^2; | |
for n=0:N | |
for m=0:M | |
% Form Fnm, Jnm | |
Fnm = zeros(Nx,Nz+1); | |
Jnm = zeros(Nx,1); | |
if(n>=1) | |
u_x = dx(unm(:,:,m+1,n-1+1),p); | |
temp = A1_xx.*u_x; | |
Fnm = Fnm - dx(temp,p); | |
temp = A1_zx.*u_x; | |
Fnm = Fnm - dz(temp,Dz,a); | |
temp = B1_x.*u_x; | |
Fnm = Fnm - temp; | |
u_z = dz(unm(:,:,m+1,n-1+1),Dz,a); | |
temp = A1_xz.*u_z; | |
Fnm = Fnm - dx(temp,p); | |
%A1_zz = 0 | |
%B1_z = 0 | |
temp = 2*1i*alpha.*S1.*u_x; | |
Fnm = Fnm - temp; | |
temp = gamma^2.*S1.*unm(:,:,m+1,n-1+1); | |
Fnm = Fnm - temp; | |
end | |
if(m>=1) | |
u_x = dx(unm(:,:,m-1+1,n+1),p); | |
temp = 2*1i*alpha.*u_x; | |
Fnm = Fnm - temp; | |
temp = 2*gamma^2.*unm(:,:,m-1+1,n+1); | |
Fnm = Fnm - temp; | |
end | |
if(n>=1 && m>=1) | |
u_x = dx(unm(:,:,m-1+1,n-1+1),p); | |
temp = 2*1i*alpha.*S1.*u_x; | |
Fnm = Fnm - temp; | |
temp = 2*gamma^2.*S1.*unm(:,:,m-1+1,n-1+1); | |
Fnm = Fnm - temp; | |
end | |
if(n>=2) | |
u_x = dx(unm(:,:,m+1,n-2+1),p); | |
temp = A2_xx.*u_x; | |
Fnm = Fnm - dx(temp,p); | |
temp = A2_zx.*u_x; | |
Fnm = Fnm - dz(temp,Dz,a); | |
temp = B2_x.*u_x; | |
Fnm = Fnm - temp; | |
u_z = dz(unm(:,:,m+1,n-2+1),Dz,a); | |
temp = A2_xz.*u_z; | |
Fnm = Fnm - dx(temp,p); | |
temp = A2_zz.*u_z; | |
Fnm = Fnm - dz(temp,Dz,a); | |
temp = B2_z.*u_z; | |
Fnm = Fnm - temp; | |
temp = 2*1i*alpha.*S2.*u_x; | |
Fnm = Fnm - temp; | |
temp = gamma^2.*S2.*unm(:,:,m+1,n-2+1); | |
Fnm = Fnm - temp; | |
end | |
if(m>=2) | |
temp = gamma^2.*unm(:,:,m-2+1,n+1); | |
Fnm = Fnm - temp; | |
end | |
if(n>=1 && m>=2) | |
temp = gamma^2.*S1.*unm(:,:,m-2+1,n-1+1); | |
Fnm = Fnm - temp; | |
end | |
if(n>=2 && m>=1) | |
u_x = dx(unm(:,:,m-1+1,n-2+1),p); | |
temp = 2*1i*alpha.*S2.*u_x; | |
Fnm = Fnm - temp; | |
temp = 2*gamma^2.*S2.*unm(:,:,m-1+1,n-2+1); | |
Fnm = Fnm - temp; | |
end | |
if(n>=2 && m>=2) | |
temp = gamma^2.*S2.*unm(:,:,m-2+1,n-2+1); | |
Fnm = Fnm - temp; | |
end | |
for r=0:m-1 | |
Jnm = Jnm + ifft( (Tw(:,m-r+1)).*fft(unm(:,ell_top,r+1,n+1))); | |
end | |
if(n>=1) | |
for r=0:m | |
Snm = ifft( (Tw(:,m-r+1)).*fft(unm(:,ell_top,r+1,n-1+1)) ); | |
Jnm = Jnm - (1.0/a)*f.*Snm; | |
end | |
end | |
% Solve elliptic equation | |
Fnmhat = fft(Fnm); | |
Jnmhat = fft(Jnm); | |
b = Fnmhat.'; | |
alphaalpha = 1.0; | |
betabeta = 0.0; | |
gammagamma = gamma*gamma - p.^2 - 2*alpha.*p; | |
d_min = 1.0; | |
n_min = 0.0; | |
r_min = xi_n_m_hat(:,m+1,n+1); | |
d_max = -1i*gammap; | |
n_max = 1.0; | |
r_max = Jnmhat; | |
Uhat = solvebvp_colloc_fast(Uhat,b,alphaalpha,betabeta,gammagamma,... | |
d_min,n_min,r_min,d_max,n_max,r_max,Nx,identy,D,D2,D_start,D_end); | |
% MSK 7/30/21: Multiple QR solver. Slower than for loops for large | |
% matrices (dimensions >= 10). | |
%Uhat = solvebvp_colloc_multiQR(b,alphaalpha,betabeta,gammagamma,d_min,n_min,... | |
%r_min,d_max,n_max,r_max,Nx,Nz,identy,D,D2,D_start,D_end); | |
if((n>0)||(m>0)) | |
unm(:,:,m+1,n+1)=ifft(Uhat); | |
end | |
end | |
end | |
return; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment