Last active
June 13, 2020 17:03
-
-
Save mcohen01/355c99dc7934df95957eb25d950568a9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import os | |
import numpy as np | |
import pandas as pd | |
import scipy.stats as stats | |
import matplotlib.pyplot as plt | |
import matplotlib.dates as mdates | |
import us as us_states | |
START_DATE = pd.to_datetime('2020-02-22') | |
url = './COVID-19/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv' | |
ts = pd.read_csv(url) | |
ts = ts[(ts.FIPS > 1000) & (ts.FIPS < 80000)] | |
ts.FIPS = ts.FIPS.astype(int) | |
cols_to_drop = ['UID', 'iso2', 'iso3', 'code3', 'Admin2', 'Province_State', 'Lat', 'Long_', 'Country_Region', 'Combined_Key'] | |
ts = ts.drop(cols_to_drop, axis=1).melt(id_vars=['FIPS']) | |
# convert to a DateTime object so we can do math on dates | |
ts.loc[:, 'Date'] = pd.to_datetime(ts.variable) | |
ts.columns = ['FIPS', 'variable', 'Cases', 'Date'] | |
ts.index = ts.Date | |
ts.index.name = None | |
ts = ts[ts.Date > START_DATE] | |
ts.loc[:, 'Day'] = (ts.Date - START_DATE).dt.days | |
ts.drop(['variable'], axis=1, inplace=True) | |
def difference(fip, df): | |
df.loc[:, 'Cases'] = df.Cases.diff().apply(lambda x: max(x, 0)) | |
df.iloc[0, 1] = 0 | |
df.loc[:, 'Cases'] = df.Cases.astype(int) | |
all_counties = pd.DataFrame() | |
for fip in ts.FIPS.unique(): | |
df = ts[ts.FIPS == fip].copy() | |
difference(fip, df) | |
all_counties = pd.concat([all_counties, df]) | |
all_counties.drop(['Date'], axis=1).to_csv('fips_cases.csv', index=False) | |
def good_states(x): | |
non_states = ['Evacuee', 'Islands', 'Recovered', 'Princess', 'Guam', 'Samoa'] | |
return x is not None and x.split(' ')[-1] not in non_states | |
def lookup_state(x): | |
s = us_states.states.lookup(x.split(',')[-1].strip()) | |
if s is not None: | |
return s.name | |
return None | |
def parse_daily_reports(path): | |
states = None | |
for f in sorted(os.listdir(path)): | |
if f[-3:] == 'csv': | |
df = pd.read_csv(path + f) | |
df['Date'] = pd.to_datetime(f[0:-4]) | |
try: | |
us = df[df.Country_Region == 'US'] | |
except: | |
us = df[df['Country/Region'] == 'US'] | |
us['Province_State'] = us['Province/State'].apply(lookup_state) | |
idx = us['Province_State'].apply(good_states) | |
us = us[idx] | |
if states is None: | |
states = us | |
else: | |
states = pd.concat([states, us]) | |
return states | |
def daily_new_cases(state): | |
if state: | |
df = all_states_df[all_states_df.Province_State == state] | |
else: | |
df = all_states_df | |
START_DATE = pd.to_datetime('2020-02-22') | |
df = df[df.Date > START_DATE] | |
diff = df.groupby(by='Date').Confirmed.sum().diff().apply(lambda x: max(x, 0)) | |
tail = diff.rolling(10).mean().tail(20) | |
slope = stats.linregress(range(len(tail)), tail).slope | |
return slope, diff, state | |
all_states_df = parse_daily_reports('./COVID-19/csse_covid_19_data/csse_covid_19_daily_reports/') | |
us = daily_new_cases(None)[1] | |
us.values[0] = 0 | |
pd.DataFrame({ | |
'cumulative': us.cumsum(), | |
'daily': us | |
}).to_csv('us_cases.csv', index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment