Created
February 2, 2017 02:01
-
-
Save mdozmorov/fb7a1f40eb18699298442c3e77a0de02 to your computer and use it in GitHub Desktop.
Differential expression analysis in RNA-seq
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Source: Additional file 1 from Łabaj, Paweł P., and David P. Kreil. “Sensitivity, Specificity, and Reproducibility of RNA-Seq Differential Expression Calls.” Biology Direct 11, no. 1 (December 20, 2016): 66. doi:10.1186/s13062-016-0169-7. | |
# https://static-content.springer.com/esm/art%3A10.1186%2Fs13062-016-0169-7/MediaObjects/13062_2016_169_MOESM1_ESM.pdf | |
DEfun <- function(counts, design) { | |
DE <- list() | |
## limma | |
gene.dge <- DGEList(counts = counts, group = factor(rep(1:2, each = 4))) | |
gene.dge.norm <- calcNormFactors(gene.dge) | |
gene.dge.norm2 <- gene.dge.norm | |
gene.dge.norm2$counts <- gene.dge.norm2$counts - 0.5 | |
rpm <- voom(gene.dge.norm2, design) | |
cm <- makeContrasts(AvsC = As - Cs, levels = design) | |
fit <- lmFit(rpm, design) | |
cf <- contrasts.fit(fit, cm) | |
fit.eB <- eBayes(cf, proportion = 0.3, robust = TRUE) | |
adjust.meth <- "BH" | |
tt.limma <- topTable(fit.eB, adjust.method = adjust.meth, number = Inf) | |
FC <- tt.limma$logFC | |
AE <- tt.limma$AveExpr | |
qval <- tt.limma$adj.P.Val | |
names(FC) <- names(AE) <- names(qval) <- rownames(tt.limma) | |
DE.list <- DElist(FC, AE, qval, 0.05) | |
DE[["limma"]] <- list(DE.list = DE.list) | |
## edgeR | |
y <- estimateCommonDisp(gene.dge.norm) | |
y <- estimateTagwiseDisp(y) | |
et <- exactTest(y) | |
tt.edgeR <- topTags(et, n = Inf, adjust.method = adjust.meth) | |
FC <- -tt.edgeR$table$logFC | |
AE <- tt.edgeR$table$logCPM | |
qval <- tt.edgeR$table$FDR | |
names(FC) <- names(AE) <- names(qval) <- rownames(tt.edgeR$table) | |
DE.list <- DElist(FC, AE, qval, 0.05) | |
## DE[['edgeR']] <- list(fit=et, tt=tt.edgeR$table, DE.list=DE.list) | |
DE[["edgeR"]] <- list(DE.list = DE.list) | |
## DESeq2 | |
colData <- data.frame(condition = rep(c("A", "C"), each = 4), type = "paired-end") | |
rownames(colData) <- colnames(counts) | |
dds <- DESeqDataSetFromMatrix(countData = round(counts), colData = colData, | |
design = ~condition) | |
dds <- DESeq(dds) | |
tt.DESeq2 <- DESeq2::results(dds, contrast = c("condition", "A", "C"), | |
pAdjustMethod = "BH", ) | |
FC <- tt.DESeq2$log2FoldChange | |
FC[is.na(FC)] <- 0 | |
AE <- log2(tt.DESeq2$baseMean + 0.5) | |
qval <- tt.DESeq2$padj | |
qval[is.na(qval)] <- 1 | |
names(FC) <- names(AE) <- names(qval) <- rownames(tt.DESeq2) | |
DE.list <- DElist(FC, AE, qval, 0.05) | |
DE[["DESeq2"]] <- list(DE.list = DE.list) | |
return(DE) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment