Created
November 17, 2016 15:28
-
-
Save mikaem/04484bb7fa0daeccd62d169aa38d9298 to your computer and use it in GitHub Desktop.
Solve Burger's equation with spectral method
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Burger's equation | |
from numpy import * | |
from scipy.special import erf | |
import matplotlib.pyplot as plt | |
N = 512 | |
x = 2*pi*arange(N)/N | |
k = fft.rfftfreq(N, 1./N) | |
u = exp(-(x-pi)**2/0.1) | |
u_hat = fft.rfft(u) | |
u0 = zeros_like(u) | |
du0 = zeros_like(u) | |
nonlin = zeros_like(u_hat) | |
u1 = zeros_like(u_hat) | |
u2 = zeros_like(u_hat) | |
rhs = zeros_like(u_hat) | |
a = array([1./6., 1./3., 1./3., 1./6.], dtype=float) | |
b = array([0.5, 0.5, 1.], dtype=float) | |
plt.figure() | |
plt.plot(x, u) | |
ax = plt.gca() | |
t = 0 | |
dt = 0.002 | |
T = 10 | |
nu = 0.01 | |
while t < T: | |
t += dt | |
# Integrate using explicit fourth order Runge Kutta | |
u2[:] = u1[:] = u_hat | |
for rk in range(4): | |
# Compute nonlinear convection | |
u0[:] = fft.irfft(u_hat) # No dealiasing (yet). Would go here | |
du0[:] = fft.irfft(1j*k*u_hat) # du/dx | |
nonlin[:] = fft.rfft(u0*du0) | |
# Compute right hand side of equation | |
rhs[:] = -nu*k**2*u_hat - nonlin | |
if rk < 3: | |
u_hat[:] = u1 + b[rk]*dt*rhs | |
u2 += a[rk]*dt*rhs | |
u_hat[:] = u2 | |
ax.clear() | |
u[:] = fft.irfft(u_hat) | |
plt.plot(x, u, 'b') | |
plt.draw() | |
plt.pause(1e-6) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment