-
-
Save mikalv/3947ccf21366669ac06a01f39d7cff05 to your computer and use it in GitHub Desktop.
Simple Tensorflow RNN LSTM text generator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
#set hyperparameters | |
max_len = 40 | |
step = 2 | |
num_units = 128 | |
learning_rate = 0.001 | |
batch_size = 200 | |
epoch = 60 | |
temperature = 0.5 | |
def read_data(file_name): | |
''' | |
open and read text file | |
''' | |
text = open(file_name, 'r').read() | |
return text.lower() | |
def featurize(text): | |
''' | |
featurize the text to train and target dataset | |
''' | |
unique_chars = list(set(text)) | |
len_unique_chars = len(unique_chars) | |
input_chars = [] | |
output_char = [] | |
for i in range(0, len(text) - max_len, step): | |
input_chars.append(text[i:i+max_len]) | |
output_char.append(text[i+max_len]) | |
train_data = np.zeros((len(input_chars), max_len, len_unique_chars)) | |
target_data = np.zeros((len(input_chars), len_unique_chars)) | |
for i , each in enumerate(input_chars): | |
for j, char in enumerate(each): | |
train_data[i, j, unique_chars.index(char)] = 1 | |
target_data[i, unique_chars.index(output_char[i])] = 1 | |
return train_data, target_data, unique_chars, len_unique_chars | |
def rnn(x, weight, bias, len_unique_chars): | |
''' | |
define rnn cell and prediction | |
''' | |
x = tf.transpose(x, [1, 0, 2]) | |
x = tf.reshape(x, [-1, len_unique_chars]) | |
x = tf.split(x, max_len, 0) | |
cell = tf.contrib.rnn.BasicLSTMCell(num_units, forget_bias=1.0) | |
outputs, states = tf.contrib.rnn.static_rnn(cell, x, dtype=tf.float32) | |
prediction = tf.matmul(outputs[-1], weight) + bias | |
return prediction | |
def sample(predicted): | |
''' | |
helper function to sample an index from a probability array | |
''' | |
exp_predicted = np.exp(predicted/temperature) | |
predicted = exp_predicted / np.sum(exp_predicted) | |
probabilities = np.random.multinomial(1, predicted, 1) | |
return probabilities | |
def run(train_data, target_data, unique_chars, len_unique_chars): | |
''' | |
main run function | |
''' | |
x = tf.placeholder("float", [None, max_len, len_unique_chars]) | |
y = tf.placeholder("float", [None, len_unique_chars]) | |
weight = tf.Variable(tf.random_normal([num_units, len_unique_chars])) | |
bias = tf.Variable(tf.random_normal([len_unique_chars])) | |
prediction = rnn(x, weight, bias, len_unique_chars) | |
softmax = tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) | |
cost = tf.reduce_mean(softmax) | |
optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate).minimize(cost) | |
init_op = tf.global_variables_initializer() | |
sess = tf.Session() | |
sess.run(init_op) | |
num_batches = int(len(train_data)/batch_size) | |
for i in range(epoch): | |
print "----------- Epoch {0}/{1} -----------".format(i+1, epoch) | |
count = 0 | |
for _ in range(num_batches): | |
train_batch, target_batch = train_data[count:count+batch_size], target_data[count:count+batch_size] | |
count += batch_size | |
sess.run([optimizer] ,feed_dict={x:train_batch, y:target_batch}) | |
#get on of training set as seed | |
seed = train_batch[:1:] | |
#to print the seed 40 characters | |
seed_chars = '' | |
for each in seed[0]: | |
seed_chars += unique_chars[np.where(each == max(each))[0][0]] | |
print "Seed:", seed_chars | |
#predict next 1000 characters | |
for i in range(1000): | |
if i > 0: | |
remove_fist_char = seed[:,1:,:] | |
seed = np.append(remove_fist_char, np.reshape(probabilities, [1, 1, len_unique_chars]), axis=1) | |
predicted = sess.run([prediction], feed_dict = {x:seed}) | |
predicted = np.asarray(predicted[0]).astype('float64')[0] | |
probabilities = sample(predicted) | |
predicted_chars = unique_chars[np.argmax(probabilities)] | |
seed_chars += predicted_chars | |
print 'Result:', seed_chars | |
sess.close() | |
if __name__ == "__main__": | |
#get data from https://s3.amazonaws.com/text-datasets/nietzsche.txt | |
text = read_data('nietzsche.txt') | |
train_data, target_data, unique_chars, len_unique_chars = featurize(text) | |
run(train_data, target_data, unique_chars, len_unique_chars) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi may i ask where is the initial seed generated? Cant change the seed