Last active
October 3, 2018 14:43
-
-
Save mikeapted/f7c8fcf7c3565861ac3b9c6a2b2140f3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from awsglue.transforms import * | |
from awsglue.utils import getResolvedOptions | |
from pyspark.context import SparkContext | |
from awsglue.context import GlueContext | |
from awsglue.job import Job | |
## @params: [JOB_NAME] | |
args = getResolvedOptions(sys.argv, ['JOB_NAME']) | |
sc = SparkContext() | |
glueContext = GlueContext(sc) | |
spark = glueContext.spark_session | |
job = Job(glueContext) | |
job.init(args['JOB_NAME'], args) | |
## @type: DataSource | |
## @args: [database = "YourInitial_bigdata", table_name = "raw2018", transformation_ctx = "datasource0"] | |
## @return: datasource0 | |
## @inputs: [] | |
datasource0 = glueContext.create_dynamic_frame.from_catalog(database = "YourInitial_bigdata", table_name = "raw2018", transformation_ctx = "datasource0") | |
## @type: ApplyMapping | |
## @args: [mapping = [("sensortype", "int", "sensortype", "int"), ("sensorvalue", "int", "sensorvalue", "int")], transformation_ctx = "applymapping1"] | |
## @return: applymapping1 | |
## @inputs: [frame = datasource0] | |
applymapping1 = ApplyMapping.apply(frame = datasource0, mappings = [("sensortype", "int", "sensortype", "int"), ("sensortype", "int", "sensortype1", "int"), ("sensorvalue", "int", "sensorvalue", "int")], transformation_ctx = "applymapping1") | |
## @type: DataSink | |
## @args: [connection_type = "s3", connection_options = {"path": "s3://YourInitial-bigdata-bucket/ml/trainingdata"}, format = "csv", transformation_ctx = "datasink2"] | |
## @return: datasink2 | |
## @inputs: [frame = applymapping1] | |
datasink2 = glueContext.write_dynamic_frame.from_options(frame = applymapping1, connection_type = "s3", connection_options = {"path": "s3://YourInitial-bigdata-bucket/ml/trainingdata"}, format = "csv", format_options = {"writeHeader": False}, transformation_ctx = "datasink2") | |
job.commit() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment