Created
September 8, 2022 10:02
-
-
Save minoki/39317c3858bbdc609bfda368319c6155 to your computer and use it in GitHub Desktop.
Fibonacci in Python and Ruby
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import timeit | |
from typing import Tuple | |
def naive_fib(n: int) -> int: | |
if n <= 1: # n == 0 or n == 1 | |
return n | |
else: | |
return naive_fib(n - 1) + naive_fib(n - 2) | |
print(naive_fib(20)) | |
def linear_fib(n: int) -> int: | |
a = 0 | |
b = 1 | |
for _ in range(n): | |
# a, b = b, a + b | |
c = a + b | |
a = b | |
b = c | |
return a | |
print(linear_fib(20)) | |
print(linear_fib(10000)) | |
# see https://blog.miz-ar.info/2019/01/fast-fibonacci/ | |
def fast_doubling(n: int) -> Tuple[int, int]: | |
if n <= 1: # n == 0 or n == 1 | |
return n, 1 | |
else: | |
a, b = fast_doubling(n // 2) | |
if n % 2 == 0: | |
return a * (b + b - a), a * a + b * b | |
else: | |
return a * a + b * b, b * (a + a + b) | |
def fast_fib(n: int) -> int: | |
return fast_doubling(n)[0] | |
print(fast_fib(10000)) | |
print("naive_fib@20*100", timeit.timeit(lambda: naive_fib(20), number=100)) | |
print("linear_fib@20*100", timeit.timeit(lambda: linear_fib(20), number=100)) | |
print("linear_fib@10000*10000", timeit.timeit(lambda: linear_fib(10000), number=10000)) | |
print("fast_fib@10000*10000", timeit.timeit(lambda: fast_fib(10000), number=10000)) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'benchmark' | |
def naive_fib(n) | |
if n <= 1 | |
n | |
else | |
naive_fib(n - 1) + naive_fib(n - 2) | |
end | |
end | |
puts(naive_fib(20)) | |
def linear_fib(n) | |
a = 0 | |
b = 1 | |
n.times do | |
# a, b = b, a + b | |
c = a + b | |
a = b | |
b = c | |
end | |
a | |
end | |
puts(linear_fib(20)) | |
puts(linear_fib(10000)) | |
Benchmark.bmbm do |x| | |
x.report("naive_fib@20*100") { 100.times do naive_fib(20) end } | |
x.report("linear_fib@20*100") { 100.times do linear_fib(20) end } | |
end | |
# see https://blog.miz-ar.info/2019/01/fast-fibonacci/ | |
def fast_doubling(n) | |
if n <= 1 | |
return n, 1 | |
else | |
a, b = fast_doubling(n/2) | |
if n % 2 == 0 | |
return a * (b + b - a), a * a + b * b | |
else | |
return a * a + b * b, b * (a + a + b) | |
end | |
end | |
end | |
def fast_fib(n) | |
fast_doubling(n)[0] | |
end | |
puts(fast_fib(10000)) | |
Benchmark.bmbm do |x| | |
x.report("linear_fib@10000*10000") { 10000.times do linear_fib(10000) end } | |
x.report("fast_fib@10000*10000") { 10000.times do fast_fib(10000) end } | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment