Created
December 20, 2020 18:03
-
-
Save mithila2806/520a5e12963fdba95e2dae6b63ce3912 to your computer and use it in GitHub Desktop.
Error Log file - Ludwig Training
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
2020-12-20 17:37:16.091097: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 | |
███████████████████████ | |
█ █ █ █ ▜█ █ █ █ █ █ | |
█ █ █ █ █ █ █ █ █ █ ███ | |
█ █ █ █ █ █ █ █ █ ▌ █ | |
█ █████ █ █ █ █ █ █ █ █ | |
█ █ ▟█ █ █ █ | |
███████████████████████ | |
ludwig v0.3.1 - Train | |
2020-12-20 17:37:17.142341: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1 | |
2020-12-20 17:37:17.176154: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:17.176730: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: | |
pciBusID: 0000:00:04.0 name: Tesla T4 computeCapability: 7.5 | |
coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.73GiB deviceMemoryBandwidth: 298.08GiB/s | |
2020-12-20 17:37:17.176779: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 | |
2020-12-20 17:37:17.181117: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10 | |
2020-12-20 17:37:17.184000: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10 | |
2020-12-20 17:37:17.184829: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10 | |
2020-12-20 17:37:17.188329: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10 | |
2020-12-20 17:37:17.189667: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10 | |
2020-12-20 17:37:17.195600: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7 | |
2020-12-20 17:37:17.195717: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:17.196269: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:17.196773: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0 | |
Experiment name: experiment | |
Model name: run | |
Output directory: results/experiment_run_1 | |
ludwig_version: '0.3.1' | |
command: ('/usr/local/bin/ludwig train --dataset hootsuite_titles.csv --config ' | |
'config.yaml') | |
random_seed: 42 | |
dataset: 'hootsuite_titles.csv' | |
data_format: 'csv' | |
config: { 'combiner': {'type': 'concat'}, | |
'input_features': [ { 'encoder': 't5', | |
'level': 'word', | |
'name': 'Original_Title', | |
'pretrained_model_name_or_path': 't5-small', | |
'reduce_output': None, | |
'tied': None, | |
'type': 'text'}, | |
{ 'encoder': 't5', | |
'level': 'word', | |
'name': 'Keyword', | |
'pretrained_model_name_or_path': 't5-small', | |
'reduce_output': None, | |
'tied': None, | |
'tied_weights': 'Original_Title', | |
'type': 'text'}], | |
'output_features': [ { 'decoder': 'generator', | |
'dependencies': [], | |
'level': 'word', | |
'loss': { 'class_similarities_temperature': 0, | |
'class_weights': 1, | |
'confidence_penalty': 0, | |
'distortion': 1, | |
'labels_smoothing': 0, | |
'negative_samples': 0, | |
'robust_lambda': 0, | |
'sampler': None, | |
'type': 'softmax_cross_entropy', | |
'unique': False, | |
'weight': 1}, | |
'name': 'Optimized_Title', | |
'reduce_dependencies': 'sum', | |
'reduce_input': 'sum', | |
'type': 'sequence'}], | |
'preprocessing': { 'audio': { 'audio_feature': {'type': 'raw'}, | |
'audio_file_length_limit_in_s': 7.5, | |
'in_memory': True, | |
'missing_value_strategy': 'backfill', | |
'norm': None, | |
'padding_value': 0}, | |
'bag': { 'fill_value': '<UNK>', | |
'lowercase': False, | |
'missing_value_strategy': 'fill_with_const', | |
'most_common': 10000, | |
'tokenizer': 'space'}, | |
'binary': { 'fill_value': 0, | |
'missing_value_strategy': 'fill_with_const'}, | |
'category': { 'fill_value': '<UNK>', | |
'lowercase': False, | |
'missing_value_strategy': 'fill_with_const', | |
'most_common': 10000}, | |
'date': { 'datetime_format': None, | |
'fill_value': '', | |
'missing_value_strategy': 'fill_with_const'}, | |
'force_split': False, | |
'h3': { 'fill_value': 576495936675512319, | |
'missing_value_strategy': 'fill_with_const'}, | |
'image': { 'in_memory': True, | |
'missing_value_strategy': 'backfill', | |
'num_processes': 1, | |
'resize_method': 'interpolate', | |
'scaling': 'pixel_normalization'}, | |
'numerical': { 'fill_value': 0, | |
'missing_value_strategy': 'fill_with_const', | |
'normalization': None}, | |
'sequence': { 'fill_value': '<UNK>', | |
'lowercase': False, | |
'missing_value_strategy': 'fill_with_const', | |
'most_common': 20000, | |
'padding': 'right', | |
'padding_symbol': '<PAD>', | |
'sequence_length_limit': 256, | |
'tokenizer': 'space', | |
'unknown_symbol': '<UNK>', | |
'vocab_file': None}, | |
'set': { 'fill_value': '<UNK>', | |
'lowercase': False, | |
'missing_value_strategy': 'fill_with_const', | |
'most_common': 10000, | |
'tokenizer': 'space'}, | |
'split_probabilities': (0.7, 0.1, 0.2), | |
'stratify': None, | |
'text': { 'char_most_common': 70, | |
'char_sequence_length_limit': 1024, | |
'char_tokenizer': 'characters', | |
'char_vocab_file': None, | |
'fill_value': '<UNK>', | |
'lowercase': True, | |
'missing_value_strategy': 'fill_with_const', | |
'padding': 'right', | |
'padding_symbol': '<PAD>', | |
'pretrained_model_name_or_path': None, | |
'unknown_symbol': '<UNK>', | |
'word_most_common': 20000, | |
'word_sequence_length_limit': 256, | |
'word_tokenizer': 'space_punct', | |
'word_vocab_file': None}, | |
'timeseries': { 'fill_value': '', | |
'missing_value_strategy': 'fill_with_const', | |
'padding': 'right', | |
'padding_value': 0, | |
'timeseries_length_limit': 256, | |
'tokenizer': 'space'}, | |
'vector': { 'fill_value': '', | |
'missing_value_strategy': 'fill_with_const'}}, | |
'training': { 'batch_size': 128, | |
'bucketing_field': None, | |
'decay': False, | |
'decay_rate': 0.96, | |
'decay_steps': 10000, | |
'early_stop': 5, | |
'epochs': 100, | |
'eval_batch_size': 0, | |
'gradient_clipping': None, | |
'increase_batch_size_on_plateau': 0, | |
'increase_batch_size_on_plateau_max': 512, | |
'increase_batch_size_on_plateau_patience': 5, | |
'increase_batch_size_on_plateau_rate': 2, | |
'learning_rate': 0.001, | |
'learning_rate_warmup_epochs': 1, | |
'optimizer': { 'beta_1': 0.9, | |
'beta_2': 0.999, | |
'epsilon': 1e-08, | |
'type': 'adam'}, | |
'reduce_learning_rate_on_plateau': 0, | |
'reduce_learning_rate_on_plateau_patience': 5, | |
'reduce_learning_rate_on_plateau_rate': 0.5, | |
'regularization_lambda': 0, | |
'regularizer': 'l2', | |
'staircase': False, | |
'validation_field': 'combined', | |
'validation_metric': 'loss'}} | |
tf_version: '2.3.1' | |
Using full raw csv, no hdf5 and json file with the same name have been found | |
Building dataset (it may take a while) | |
Writing preprocessed dataset cache | |
Writing train set metadata | |
Training set: 692 | |
Validation set: 86 | |
Test set: 196 | |
2020-12-20 17:37:22.112612: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX2 FMA | |
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. | |
2020-12-20 17:37:22.117970: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2200000000 Hz | |
2020-12-20 17:37:22.118161: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x8495dc0 initialized for platform Host (this does not guarantee that XLA will be used). Devices: | |
2020-12-20 17:37:22.118191: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version | |
2020-12-20 17:37:22.248167: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:22.248841: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x8495f80 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: | |
2020-12-20 17:37:22.248878: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Tesla T4, Compute Capability 7.5 | |
2020-12-20 17:37:22.249093: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:22.249635: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: | |
pciBusID: 0000:00:04.0 name: Tesla T4 computeCapability: 7.5 | |
coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.73GiB deviceMemoryBandwidth: 298.08GiB/s | |
2020-12-20 17:37:22.249707: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 | |
2020-12-20 17:37:22.249750: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10 | |
2020-12-20 17:37:22.249777: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10 | |
2020-12-20 17:37:22.249805: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10 | |
2020-12-20 17:37:22.249831: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10 | |
2020-12-20 17:37:22.249855: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10 | |
2020-12-20 17:37:22.249878: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7 | |
2020-12-20 17:37:22.249965: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:22.250553: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:22.251036: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0 | |
2020-12-20 17:37:22.251109: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 | |
2020-12-20 17:37:22.956132: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix: | |
2020-12-20 17:37:22.956192: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263] 0 | |
2020-12-20 17:37:22.956204: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0: N | |
2020-12-20 17:37:22.956403: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:22.956985: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
2020-12-20 17:37:22.957515: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 13936 MB memory) -> physical GPU (device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5) | |
Downloading: 100% 242M/242M [00:08<00:00, 27.6MB/s] | |
2020-12-20 17:37:32.305237: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. | |
2020-12-20 17:37:32.449536: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10 | |
All model checkpoint layers were used when initializing TFT5Model. | |
All the layers of TFT5Model were initialized from the model checkpoint at t5-small. | |
If your task is similar to the task the model of the checkpoint was trained on, you can already use TFT5Model for predictions without further training. | |
All model checkpoint layers were used when initializing TFT5Model. | |
All the layers of TFT5Model were initialized from the model checkpoint at t5-small. | |
If your task is similar to the task the model of the checkpoint was trained on, you can already use TFT5Model for predictions without further training. | |
╒══════════╕ | |
│ TRAINING │ | |
╘══════════╛ | |
Epoch 1 | |
Training: 0% 0/6 [00:00<?, ?it/s]Traceback (most recent call last): | |
File "/usr/local/bin/ludwig", line 8, in <module> | |
sys.exit(main()) | |
File "/usr/local/lib/python3.6/dist-packages/ludwig/cli.py", line 146, in main | |
CLI() | |
File "/usr/local/lib/python3.6/dist-packages/ludwig/cli.py", line 72, in __init__ | |
getattr(self, args.command)() | |
File "/usr/local/lib/python3.6/dist-packages/ludwig/cli.py", line 77, in train | |
train.cli(sys.argv[2:]) | |
File "/usr/local/lib/python3.6/dist-packages/ludwig/train.py", line 412, in cli | |
train_cli(**vars(args)) | |
File "/usr/local/lib/python3.6/dist-packages/ludwig/train.py", line 197, in train_cli | |
debug=debug, | |
File "/usr/local/lib/python3.6/dist-packages/ludwig/api.py", line 469, in train | |
save_path=model_dir, | |
File "/usr/local/lib/python3.6/dist-packages/ludwig/models/trainer.py", line 552, in train | |
self.regularization_lambda | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py", line 780, in __call__ | |
result = self._call(*args, **kwds) | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py", line 823, in _call | |
self._initialize(args, kwds, add_initializers_to=initializers) | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py", line 697, in _initialize | |
*args, **kwds)) | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py", line 2855, in _get_concrete_function_internal_garbage_collected | |
graph_function, _, _ = self._maybe_define_function(args, kwargs) | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py", line 3213, in _maybe_define_function | |
graph_function = self._create_graph_function(args, kwargs) | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py", line 3075, in _create_graph_function | |
capture_by_value=self._capture_by_value), | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py", line 986, in func_graph_from_py_func | |
func_outputs = python_func(*func_args, **func_kwargs) | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py", line 600, in wrapped_fn | |
return weak_wrapped_fn().__wrapped__(*args, **kwds) | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py", line 3735, in bound_method_wrapper | |
return wrapped_fn(*args, **kwargs) | |
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py", line 973, in wrapper | |
raise e.ag_error_metadata.to_exception(e) | |
ValueError: in user code: | |
/usr/local/lib/python3.6/dist-packages/ludwig/models/ecd.py:176 train_step * | |
model_outputs = self((inputs, targets), training=True) | |
/usr/local/lib/python3.6/dist-packages/ludwig/models/ecd.py:101 call * | |
encoder_output = encoder(input_values, training=training, | |
/usr/local/lib/python3.6/dist-packages/ludwig/features/text_feature.py:242 call * | |
encoder_output = self.encoder_obj( | |
/usr/local/lib/python3.6/dist-packages/ludwig/encoders/text_encoders.py:640 call * | |
transformer_outputs = self.transformer( | |
/usr/local/lib/python3.6/dist-packages/transformers/models/t5/modeling_tf_t5.py:1095 call * | |
inputs = input_processing( | |
/usr/local/lib/python3.6/dist-packages/transformers/modeling_tf_utils.py:349 input_processing * | |
raise ValueError( | |
ValueError: The following keyword arguments are not supported by this model: ['token_type_ids']. | |
Training: 0% 0/6 [00:01<?, ?it/s] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment