Last active
May 7, 2018 06:38
-
-
Save mitmul/571a155d651df3b0dbe6ec129c846cb1 to your computer and use it in GitHub Desktop.
CuPy issue #1222 ( https://github.com/cupy/cupy/issues/1222 )
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
docker build -t mitmul/repro:cupy-issue-1222 . | |
nvidia-docker run --rm \ | |
-v $PWD:/root \ | |
-ti mitmul/repro:cupy-issue-1222 \ | |
python3 train.py |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
FROM nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04 | |
RUN apt-get update && apt-get install -y \ | |
python3 \ | |
python3-dev \ | |
python3-dbg \ | |
python3-pip \ | |
python3-wheel \ | |
git \ | |
wget \ | |
curl \ | |
vim | |
RUN pip3 install \ | |
cython \ | |
chainer==4.0.0 \ | |
cupy-cuda90==4.0.0 | |
WORKDIR /root |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import chainer | |
import chainer.functions as F | |
import chainer.links as L | |
from chainer import training | |
class MLP(chainer.Chain): | |
def __init__(self, n_units, n_out): | |
super(MLP, self).__init__() | |
with self.init_scope(): | |
# the size of the inputs to each layer will be inferred | |
self.l1 = L.Linear(None, n_units) # n_in -> n_units | |
self.l2 = L.Linear(None, n_units) # n_units -> n_units | |
self.l3 = L.Linear(None, n_out) # n_units -> n_out | |
def __call__(self, x): | |
h1 = F.relu(self.l1(x)) | |
h2 = F.relu(self.l2(h1)) | |
return self.l3(h2) | |
def train(): | |
train, test = chainer.datasets.get_mnist() | |
batch_size = 64 | |
learning_rate = 0.05 | |
model = L.Classifier(MLP(1000, 10)) | |
optimizer = chainer.optimizers.MomentumSGD(learning_rate) | |
optimizer.setup(model) | |
optimizer.add_hook(chainer.optimizer.WeightDecay(5e-4)) | |
# Set up a trainer | |
num_gpus = 2 | |
devices = range(num_gpus) | |
# this is just to force the error | |
chainer.cuda.get_device_from_id(0).use() | |
train_iters = [chainer.iterators.MultiprocessIterator(i, batch_size, n_processes=num_gpus) \ | |
for i in chainer.datasets.split_dataset_n_random(train, len(devices))] | |
updater = training.updaters.MultiprocessParallelUpdater(train_iters, optimizer, devices=range(num_gpus)) | |
updater.setup_workers() | |
if __name__=="__main__": | |
train() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment