Created
February 7, 2019 18:53
-
-
Save mizchi/40b058e21cdda20b10794c326926a814 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.optimizers import SGD, Adam | |
from keras.layers import Dense, Activation, Dropout | |
from keras.models import Sequential | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.preprocessing import LabelEncoder | |
import numpy as np | |
import pandas as pd | |
def normalize_data(data): | |
not_concerned_columns = ["PassengerId", "Name", | |
"Ticket", "Fare", "Cabin", "Embarked"] | |
data = data.drop(not_concerned_columns, axis=1) | |
data = data.dropna() | |
# normalize | |
dummy_columns = ["Pclass"] | |
for column in dummy_columns: | |
data = pd.concat([data, pd.get_dummies( | |
data[column], prefix=column)], axis=1) | |
data = data.drop(column, axis=1) | |
# normalize Label:Sex to int | |
le = LabelEncoder() | |
le.fit(["male", "female"]) | |
data["Sex"] = le.transform(data["Sex"]) | |
# normalize Age | |
ss = StandardScaler() | |
data["Age"] = ss.fit_transform(data["Age"].values.reshape(-1, 1)) | |
return data | |
def split_train_and_test(data, rate=0.8): | |
data_y = data["Survived"] | |
data_x = data.drop(["Survived"], axis=1) | |
train_valid_split_idx = int(len(data_x) * rate) | |
train_x = data_x[:train_valid_split_idx] | |
train_y = data_y[:train_valid_split_idx] | |
valid_test_split_idx = (len(data_x) - train_valid_split_idx) // 2 | |
test_x = data_x[train_valid_split_idx + valid_test_split_idx:] | |
test_y = data_y[train_valid_split_idx + valid_test_split_idx:] | |
return train_x.values, train_y.values.reshape(-1, 1), test_x.values, test_y.values.reshape(-1, 1) | |
def build_model(input_dim): | |
model = Sequential() | |
model.add(Dense(20, input_dim=input_dim)) | |
model.add(Activation('relu')) | |
model.add(Dense(1, input_dim=20)) | |
model.add(Activation('sigmoid')) | |
model.compile(optimizer=SGD(lr=0.01), | |
loss='binary_crossentropy', | |
metrics=['accuracy']) | |
return model | |
# load data | |
train_data = pd.read_csv("data/train.csv") | |
normalized_data = normalize_data(train_data) | |
train_x, train_y, test_x, test_y = split_train_and_test(normalized_data, 0.8) | |
model = build_model(train_x.shape[1]) | |
# train | |
model.fit(train_x, train_y, nb_epoch=120, batch_size=16) | |
# test | |
[loss, accuracy] = model.evaluate(test_x, test_y) | |
print("loss:{0} -- accuracy:{1}".format(loss, accuracy)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment