Created
April 8, 2025 12:32
-
-
Save mizchi/e86c2196e3495b9591876ff836208f31 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// https://orm.drizzle.team/docs/guides/vector-similarity-search | |
import { PGlite } from "npm:@electric-sql/pglite"; | |
import { vector as pgVector } from "@electric-sql/pglite/vector"; | |
import { index, integer, pgTable, vector, text } from "drizzle-orm/pg-core"; | |
import { drizzle, type PgliteDatabase } from "drizzle-orm/pglite"; | |
import { openai } from "@ai-sdk/openai"; | |
import { embed } from "ai"; | |
import { cosineDistance, sql, desc, gt } from "drizzle-orm"; | |
// openai embedding | |
async function generateEmbedding(value: string) { | |
const { embedding } = await embed({ | |
model: openai.embedding("text-embedding-ada-002"), | |
value, | |
}); | |
return embedding; | |
} | |
// schema | |
export const doc = pgTable( | |
"doc", | |
{ | |
id: integer().primaryKey().generatedAlwaysAsIdentity(), | |
title: text("title"), | |
content: text("content").notNull(), | |
embedding: vector("embedding", { dimensions: 1536 }), | |
}, | |
(table) => [ | |
index("embeddingIndex").using( | |
"hnsw", | |
table.embedding.op("vector_cosine_ops") | |
), | |
] | |
); | |
const schema = { | |
doc, | |
}; | |
type DB = PgliteDatabase<typeof schema>; | |
async function createDoc( | |
db: DB, | |
data: { | |
title?: string; | |
content: string; | |
} | |
) { | |
const embedding = await generateEmbedding(data.content); | |
await db.insert(doc).values({ | |
title: data.title, | |
content: data.content, | |
embedding, | |
}); | |
} | |
async function searchDocBySimilarity( | |
db: DB, | |
text: string, | |
opts: { | |
threshold?: number; | |
limit?: number; | |
} | |
) { | |
const embedding = await generateEmbedding(text); | |
const similarity = sql<number>`1 - (${cosineDistance( | |
doc.embedding, | |
embedding | |
)})`; | |
return db | |
.select({ | |
id: doc.id, | |
similarity, | |
content: doc.content, | |
}) | |
.from(doc) | |
.where(gt(similarity, opts.threshold ?? 0.7)) | |
.orderBy((t) => desc(t.similarity)) | |
.limit(opts.limit ?? 5); | |
} | |
async function initDb(): Promise<DB> { | |
const pglite = new PGlite({ | |
extensions: { vector: pgVector }, | |
// dataDir: "./data", | |
}); | |
await pglite.exec("CREATE EXTENSION IF NOT EXISTS vector;"); | |
await pglite.exec(/*sql*/ ` | |
CREATE TABLE IF NOT EXISTS doc ( | |
id SERIAL PRIMARY KEY, | |
title TEXT, | |
content TEXT NOT NULL, | |
embedding vector(1536) | |
); | |
`); | |
const db = drizzle({ | |
client: pglite, | |
schema: schema, | |
}); | |
return db; | |
} | |
const db = await initDb(); | |
// run | |
const seedData = ["hello world", "green tea", "black"]; | |
for (const data of seedData) { | |
await createDoc(db, { | |
content: data, | |
}); | |
} | |
// search | |
const result = await searchDocBySimilarity(db, "black", { | |
threshold: 0.7, | |
limit: 5, | |
}); | |
console.log(result); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment