Created
August 18, 2021 12:22
-
-
Save mnemocron/01845532b7e3bc622aa072790e3cfb8b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
clear('all'); | |
close('all'); | |
clc(); | |
fsdac = 12e9; % sampling rate of DAC system | |
fnco = 2e9; % carrier frequency | |
fout = 450e3; % I/Q baseband channel modulated frequency | |
tsim = 100000e-9; % simulation time | |
M = 16; | |
message = 0:M-1; | |
symbols = qammod(message,M,'bin', 'UnitAveragePower',true, 'PlotConstellation', true); | |
% oversampling factor in order to get more datapoints / simulate a zero-order-hold at the modulator output | |
ovs = 5; | |
t = linspace(0, tsim, fsdac * tsim); | |
t(end) = []; % | |
tovs = linspace(0, tsim, fsdac * tsim * ovs + 1 - ovs); | |
tovs(end) = []; | |
f = linspace(0, fsdac * ovs, size(tovs, 2)); | |
iqgrid = figure(); | |
% for each symbol | |
for kfo = 1 : size(symbols, 2) | |
% baseband I/Q modulation | |
% QAM is amplitude modulation --> take the amplitude from the symbols and apply it to the baseband frequency | |
xi = real(symbols(kfo)) * cos( 2*pi*fout*t ); | |
xq = imag(symbols(kfo)) * -sin( 2*pi*fout*t ); | |
% NCO carrier frequency | |
ncoi = cos( 2*pi*fnco*t ); | |
ncoq = sin( 2*pi*fnco*t ); | |
% I/Q Modulation (single channel output) | |
outi = xi.*ncoi + xq.*ncoq; | |
% Quantization of modulated signal | |
% signed 16 bit mit 14 bit Nachkommastellen | |
x = storedIntegerToDouble( fi( outi, true, 16, 14) ) ./ (2^14); | |
% digital to analog: ZOH | |
xovs = repelem(x,1,ovs); | |
% digital to analog: Return to Zero / Pulse | |
% xovs = upsample(x, ovs); | |
% Nonlinearity (analoge amplifier after DAC) | |
% tanh shows saturation effect like power amplifiers | |
k = 1.0; | |
yovs = tanh(xovs .* k) ./ k; | |
% FFT | |
% yovs(kfo, :) = 20.*log10(abs(fft(xovs) .* (2 / size(tovs, 2)))); %#ok<SAGROW> | |
specx = 20.*log10(abs(fft(xovs) .* (2 / size(tovs, 2)))); | |
% specy = 20.*log10(abs(fft(yovs) .* (2 / size(tovs, 2)))); | |
% Coordinates on I/Q grid | |
coord = 1+mod((kfo-1)*sqrt(M),M-1); | |
if kfo == size(symbols,2) | |
coord = size(symbols,2); | |
end | |
subplot(sqrt(M),sqrt(M), coord ); | |
grid('on'); | |
hold('on'); | |
if(coord == (M-sqrt(M)+1)) | |
xlabel('Frequency in Hz'); | |
ylabel('Power in dBc'); | |
end | |
plot(f, specx); | |
% plot(f, specy); | |
axis([fnco - 10e6, fnco + 10e6, -150, 0]); | |
titlestr = sprintf("I/Q = [%.3f, %.3f]", real(symbols(kfo)), imag(symbols(kfo))); | |
title(titlestr); | |
end | |
% titlestr2 = sprintf("QAM-%d Spectrum Simulation with nonlinear Distortion", M); | |
gridax=axes(iqgrid,'visible','off'); | |
gridax.Title.Visible='on'; | |
gridax.XLabel.Visible='on'; | |
gridax.YLabel.Visible='on'; | |
ylabel(gridax,'Quadrature Amplitude'); | |
xlabel(gridax,'In-phase Amplitude'); | |
titlestr2 = sprintf("QAM-%d Spectrum Simulation", M); | |
sgtitle(titlestr2); | |
set(gcf, 'Position', [100, 100, 800, 800]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment