Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.

by Bjørn Friese
Beautiful is better than ugly. Explicit is better than implicit.
I frequently deal with collections of things in the programs I write. Collections of droids, jedis, planets, lightsabers, starfighters, etc. When programming in Python, these collections of things are usually represented as lists, sets and dictionaries. Oftentimes, what I want to do with collections is to transform them in various ways. Comprehensions is a powerful syntax for doing just that. I use them extensively, and it's one of the things that keep me coming back to Python. Let me show you a few examples of the incredible usefulness of comprehensions.
Picking the right architecture = Picking the right battles + Managing trade-offs
"""making a dataframe""" | |
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) | |
"""quick way to create an interesting data frame to try things out""" | |
df = pd.DataFrame(np.random.randn(5, 4), columns=['a', 'b', 'c', 'd']) | |
"""convert a dictionary into a DataFrame""" | |
"""make the keys into columns""" | |
df = pd.DataFrame(dic, index=[0]) |
A warning occurred (42 apples) | |
An error occurred |