Last active
April 16, 2025 21:31
-
-
Save msaroufim/305bec86209f61b24f327821e1d6aa18 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Limitations | |
1. Cannot do heavy templating, cannot use thrust for reductions | |
2. Cannot import any host includes | |
Thank you @malfet! | |
""" | |
import ctypes | |
import torch | |
import time | |
# TODO: Instead initialize cuda context instead of doing this hack | |
torch.randn(1, device="cuda") | |
# Load CUDA driver and NVRTC | |
# TODO: Need a better solution for this problem when we ship the right nvrtc | |
libnvrtc = ctypes.CDLL('/home/marksaroufim/.conda/envs/nv/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12') | |
libcuda = ctypes.CDLL('libcuda.so') | |
# CUDA constants | |
NVRTC_SUCCESS = 0 | |
CUDA_SUCCESS = 0 | |
# Helper: check NVRTC errors | |
def check_nvrtc(result): | |
if result != NVRTC_SUCCESS: | |
err_str = ctypes.c_char_p() | |
libnvrtc.nvrtcGetErrorString(result, ctypes.byref(err_str)) | |
raise RuntimeError(f'NVRTC error: {err_str.value.decode()}') | |
# Helper: check CUDA errors | |
def check_cuda(result): | |
if result != CUDA_SUCCESS: | |
err_str = ctypes.c_char_p() | |
libcuda.cuGetErrorString(result, ctypes.byref(err_str)) | |
raise RuntimeError(f'CUDA error: {err_str.value.decode()}') | |
# CUDA kernel as string | |
kernel = b""" | |
extern "C" | |
__global__ void vector_add(const float* a, const float* b, float* c, int n) { | |
int i = threadIdx.x + blockIdx.x * blockDim.x; | |
if (i < n) | |
c[i] = a[i] + b[i]; | |
} | |
""" | |
# 1. Compile with NVRTC | |
start_time = time.time() | |
prog = ctypes.c_void_p() | |
check_nvrtc(libnvrtc.nvrtcCreateProgram(ctypes.byref(prog), | |
kernel, | |
b'vector_add.cu', | |
0, None, None)) | |
# TODO: We should figure out how to pass in the version of CUDA we want to pass in exactly to compile to the right arch | |
res = libnvrtc.nvrtcCompileProgram(prog, 0, None) | |
if res != NVRTC_SUCCESS: | |
# Get log | |
log_size = ctypes.c_size_t() | |
libnvrtc.nvrtcGetProgramLogSize(prog, ctypes.byref(log_size)) | |
log = ctypes.create_string_buffer(log_size.value) | |
libnvrtc.nvrtcGetProgramLog(prog, log) | |
raise RuntimeError(f"Compilation failed:\n{log.value.decode()}") | |
# Get PTX | |
ptx_size = ctypes.c_size_t() | |
check_nvrtc(libnvrtc.nvrtcGetPTXSize(prog, ctypes.byref(ptx_size))) | |
ptx = ctypes.create_string_buffer(ptx_size.value) | |
check_nvrtc(libnvrtc.nvrtcGetPTX(prog, ptx)) | |
libnvrtc.nvrtcDestroyProgram(ctypes.byref(prog)) | |
# 3. Load PTX module | |
module = ctypes.c_void_p() | |
with torch.cuda.default_stream(): | |
check_cuda(libcuda.cuModuleLoadData(ctypes.byref(module), ptx)) | |
func = ctypes.c_void_p() | |
check_cuda(libcuda.cuModuleGetFunction(ctypes.byref(func), module, b"vector_add")) | |
compile_time = time.time() - start_time | |
print(f"Kernel compiled in {compile_time:.2f} seconds") | |
# 4. Prepare data | |
N = 512 | |
a = torch.rand(N, device="cuda") | |
b = torch.rand(N, device="cuda") | |
c = torch.empty_like(a) | |
d_a = ctypes.c_void_p(a.data_ptr()) | |
d_b = ctypes.c_void_p(b.data_ptr()) | |
d_c = ctypes.c_void_p(c.data_ptr()) | |
# 5. Launch kernel | |
threads = 256 | |
blocks = (N + threads - 1) // threads | |
int_arg = ctypes.c_int(N) | |
arg1 = ctypes.byref(d_a) | |
arg2 = ctypes.byref(d_b) | |
arg3 = ctypes.byref(d_c) | |
arg4 = ctypes.byref(int_arg) | |
args = (ctypes.c_void_p * 4)( | |
ctypes.cast(arg1, ctypes.c_void_p), | |
ctypes.cast(arg2, ctypes.c_void_p), | |
ctypes.cast(arg3, ctypes.c_void_p), | |
ctypes.cast(arg4, ctypes.c_void_p) | |
) | |
check_cuda(libcuda.cuLaunchKernel(func, | |
blocks, 1, 1, | |
threads, 1, 1, | |
0, None, args, None)) | |
# Print a few results | |
print("Result (first 5):", c[:5]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment