Last active
March 14, 2019 02:32
-
-
Save nathania/29988e8f986c788b555264fca8002495 to your computer and use it in GitHub Desktop.
RStudio Community reply: How to apply a plotting function to a list of dataframes *and* a character vector
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://community.rstudio.com/t/how-to-apply-a-plotting-function-to-a-list-of-dataframes-and-a-character-vector/26033 | |
library(tidyverse) | |
library(scales) | |
library(naniar) | |
# original viz ------------------------------------------------------------ | |
cols <- c('Good' = '#1a9641', | |
'OK' = '#a6d96a', | |
'Bad' = '#fdae61', | |
'Remove' = '#d7191c') | |
dummy_groups <- map2(names(cols), c(10, 3, 1, 1), ~ rep(.x, .y)) %>% unlist() | |
missingness_by_vore <- msleep %>% | |
gather(key ='feature', value = 'value', -vore) %>% | |
add_count(vore, feature, | |
wt = is.na(value), | |
name = 'num_missing') %>% | |
add_count(vore, feature, | |
name = 'num_rows') %>% | |
mutate(pct_missing = num_missing / num_rows) %>% | |
distinct(vore, | |
feature, | |
num_missing, | |
pct_missing) %>% | |
mutate(Group = map_chr(ntile(pct_missing, length(dummy_groups)), | |
~ pluck(dummy_groups, .x))) | |
ggplot(missingness_by_vore, | |
aes(x = feature, | |
y = num_missing, | |
fill = Group)) + | |
geom_col() + | |
geom_text(aes(label = scales::percent(pct_missing) %>% | |
modify_if(. == '0.0%', ~ '')), | |
nudge_y = 2, size = 2) + | |
scale_fill_manual(values = cols, | |
breaks = names(cols)) + | |
coord_flip() + | |
labs(x = 'Features', | |
y = 'Number of missing rows') + | |
facet_wrap(vars(vore)) + | |
theme_minimal() | |
# naniar ----------------------------------------------------------------- | |
library(tidyverse) | |
library(scales) | |
library(naniar) | |
gg_miss_var(msleep, vore, show_pct = TRUE) + ylim(0, 100) | |
msleep2 <- group_nest(msleep, vore) %>% | |
mutate(missingness = map2(data, vore, | |
~ vis_miss(.x, cluster = TRUE) + labs(title = .y))) %>% | |
mutate(miss_upset = map(data, | |
gg_miss_upset)) | |
msleep2$missingness[[2]] | |
msleep2$miss_upset[[2]] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment