Created
April 17, 2014 00:32
-
-
Save ndawe/10944859 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
===================================== | |
Multi-class AdaBoosted Decision Trees | |
===================================== | |
This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can | |
improve prediction accuracy on a multi-class problem. The classification | |
dataset is constructed by taking a ten-dimensional standard normal distribution | |
and defining three classes separated by nested concentric ten-dimensional | |
spheres such that roughly equal numbers of samples are in each class (quantiles | |
of the :math:`\chi^2` distribution). | |
The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R | |
uses the probability estimates to update the additive model, while SAMME uses | |
the classifications only. As the example illustrates, the SAMME.R algorithm | |
typically converges faster than SAMME, achieving a lower test error with fewer | |
boosting iterations. The error of each algorithm on the test set after each | |
boosting iteration is shown on the left, the classification error on the test | |
set of each tree is shown in the middle, and the boost weight of each tree is | |
shown on the right. All trees have a weight of one in the SAMME.R algorithm and | |
therefore are not shown. | |
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. | |
""" | |
print(__doc__) | |
# Author: Noel Dawe <[email protected]> | |
# | |
# License: BSD 3 clause | |
from sklearn.externals.six.moves import zip | |
import matplotlib.pyplot as plt | |
from sklearn.datasets import make_gaussian_quantiles | |
from sklearn.ensemble import AdaBoostClassifier | |
from sklearn.externals.six.moves import xrange | |
from sklearn.metrics import accuracy_score | |
from sklearn.tree import DecisionTreeClassifier | |
X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, | |
n_classes=3, random_state=1) | |
n_split = 3000 | |
X_train, X_test = X[:n_split], X[n_split:] | |
y_train, y_test = y[:n_split], y[n_split:] | |
bdt_real = AdaBoostClassifier( | |
DecisionTreeClassifier(max_depth=2), | |
n_estimators=600, | |
learning_rate=1) | |
bdt_discrete = AdaBoostClassifier( | |
DecisionTreeClassifier(max_depth=2), | |
n_estimators=600, | |
learning_rate=1.5, | |
algorithm="SAMME") | |
bdt_real.fit(X_train, y_train) | |
bdt_discrete.fit(X_train, y_train) | |
real_test_errors = [] | |
discrete_test_errors = [] | |
for real_test_predict, discrete_train_predict in zip( | |
bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): | |
real_test_errors.append( | |
1. - accuracy_score(real_test_predict, y_test)) | |
discrete_test_errors.append( | |
1. - accuracy_score(discrete_train_predict, y_test)) | |
n_trees_discrete = len(bdt_discrete) | |
n_trees_real = len(bdt_real) | |
# Boosting might terminate early but the following arrays are always | |
# n_estimators long. We crop them to the actual number of tree here: | |
discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] | |
real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] | |
discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] | |
plt.figure(figsize=(15, 5)) | |
plt.subplot(131) | |
plt.plot(xrange(1, n_trees_discrete + 1), | |
discrete_test_errors, c='black', label='SAMME') | |
plt.plot(xrange(1, n_trees_real + 1), | |
real_test_errors, c='black', | |
linestyle='dashed', label='SAMME.R') | |
plt.legend() | |
plt.ylim(0.18, 0.62) | |
plt.ylabel('Test Error') | |
plt.xlabel('Number of Trees') | |
plt.subplot(132) | |
plt.plot(xrange(1, n_trees_discrete + 1), discrete_estimator_errors, | |
"b", label='SAMME', alpha=.5) | |
plt.plot(xrange(1, n_trees_real + 1), real_estimator_errors, | |
"r", label='SAMME.R', alpha=.5) | |
plt.legend() | |
plt.ylabel('Error') | |
plt.xlabel('Number of Trees') | |
plt.ylim((.2, | |
max(real_estimator_errors.max(), | |
discrete_estimator_errors.max()) * 1.2)) | |
plt.xlim((-20, len(bdt_discrete) + 20)) | |
plt.subplot(133) | |
plt.plot(xrange(1, n_trees_discrete + 1), discrete_estimator_weights, | |
"b", label='SAMME') | |
plt.legend() | |
plt.ylabel('Weight') | |
plt.xlabel('Number of Trees') | |
plt.ylim((0, discrete_estimator_weights.max() * 1.2)) | |
plt.xlim((-20, n_trees_discrete + 20)) | |
# prevent overlapping y-axis labels | |
plt.subplots_adjust(wspace=0.25) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment