-
-
Save neerajkanhere/c9e3100bfcba0b10c1585839e59267b7 to your computer and use it in GitHub Desktop.
C++ OpenCV Image classification from ONNX model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <chrono> | |
#include <cmath> | |
#include <exception> | |
#include <fstream> | |
#include <iostream> | |
#include <limits> | |
#include <numeric> | |
#include <opencv2/dnn/dnn.hpp> | |
#include <opencv2/imgcodecs.hpp> | |
#include <opencv2/imgproc.hpp> | |
#include <opencv2/opencv.hpp> | |
#include <string> | |
#include <vector> | |
std::vector<std::string> readLabels(std::string& labelFilepath) { | |
std::vector<std::string> labels; | |
std::string line; | |
std::ifstream fp(labelFilepath); | |
while (std::getline(fp, line)) { | |
labels.push_back(line); | |
} | |
return labels; | |
} | |
std::vector<float> sigmoid(const std::vector<float>& m1) { | |
const unsigned long vectorSize = m1.size(); | |
std::vector<float> output(vectorSize); | |
for (unsigned i = 0; i != vectorSize; ++i) { | |
output[i] = 1 / (1 + exp(-m1[i])); | |
} | |
return output; | |
} | |
int main(int argc, char* argv[]) { | |
int inpWidth = 128; | |
int inpHeight = 128; | |
std::string modelFilepath{ | |
"/media/vietanhdev/DATA/Works/DeepLearning/ONNX-Runtime-Inference/" | |
"resnet18.onnx"}; | |
std::string labelFilepath{ | |
"/media/vietanhdev/DATA/Works/DeepLearning/ONNX-Runtime-Inference/" | |
"dataset/classes.txt"}; | |
std::string imageFilepath{argv[1]}; | |
std::vector<std::string> labels{readLabels(labelFilepath)}; | |
cv::Mat image = cv::imread(imageFilepath, cv::ImreadModes::IMREAD_COLOR); | |
cv::Mat blob; | |
cv::Scalar mean{0.4151, 0.3771, 0.4568}; | |
cv::Scalar std{0.2011, 0.2108, 0.1896}; | |
bool swapRB = false; | |
bool crop = false; | |
cv::dnn::blobFromImage(image, blob, 1.0, cv::Size(inpWidth, inpHeight), mean, | |
swapRB, crop); | |
if (std.val[0] != 0.0 && std.val[1] != 0.0 && std.val[2] != 0.0) { | |
cv::divide(blob, std, blob); | |
} | |
cv::dnn::Net net = cv::dnn::readNet(modelFilepath); | |
net.setInput(blob); | |
cv::Mat prob = net.forward(); | |
std::cout << prob << std::endl; | |
// Apply sigmoid | |
cv::Mat probReshaped = prob.reshape(1, prob.total() * prob.channels()); | |
std::vector<float> probVec = | |
probReshaped.isContinuous() ? probReshaped : probReshaped.clone(); | |
std::vector<float> probNormalized = sigmoid(probVec); | |
cv::Point classIdPoint; | |
double confidence; | |
minMaxLoc(prob.reshape(1, 1), 0, &confidence, 0, &classIdPoint); | |
int classId = classIdPoint.x; | |
std::cout << " ID " << classId << " - " << labels[classId] << " confidence " | |
<< confidence << std::endl; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment