Created
August 17, 2025 16:07
-
-
Save nestharus/438a010593a53cb817276a9f34de6312 to your computer and use it in GitHub Desktop.
Reranker FastAPI Qwen3
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from typing import List, Optional | |
| from vllm import LLM, SamplingParams | |
| from vllm.inputs.data import TokensPrompt | |
| from transformers import AutoTokenizer | |
| import math | |
| class RerankRequest(BaseModel): | |
| query: str | |
| documents: List[str] | |
| instruction: Optional[str] = 'Given a web search query, retrieve relevant passages that answer the query' | |
| top_n: Optional[int] = None | |
| class RerankResult(BaseModel): | |
| document: str | |
| score: float | |
| index: int | |
| class RerankResponse(BaseModel): | |
| results: List[RerankResult] | |
| MODEL_NAME = "Qwen/Qwen3-Reranker-8B" | |
| print(f"🚀 Loading model: {MODEL_NAME}") | |
| llm = LLM( | |
| model=MODEL_NAME, | |
| tensor_parallel_size=1, # Adjust for your hardware | |
| max_model_len=8192, | |
| enable_prefix_caching=True, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| SUFFIX = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n" | |
| MAX_LENGTH = 8192 | |
| SUFFIX_TOKENS = tokenizer.encode(SUFFIX, add_special_tokens=False) | |
| TRUE_TOKEN_ID = tokenizer("yes", add_special_tokens=False).input_ids[0] | |
| FALSE_TOKEN_ID = tokenizer("no", add_special_tokens=False).input_ids[0] | |
| sampling_params = SamplingParams( | |
| temperature=0, | |
| max_tokens=1, | |
| logprobs=20, # Request logprobs for top tokens | |
| allowed_token_ids=[TRUE_TOKEN_ID, FALSE_TOKEN_ID], | |
| ) | |
| print("✅ Model loaded successfully.") | |
| app = FastAPI(title="High-Performance Reranker API") | |
| @app.post("/rerank", response_model=RerankResponse) | |
| async def rerank(request: RerankRequest): | |
| messages = [] | |
| for doc in request.documents: | |
| text = [ | |
| {"role": "system", "content": "Judge whether the Document meets the requirements..."}, | |
| {"role": "user", "content": f"<Instruct>: {request.instruction}\n\n<Query>: {request.query}\n\n<Document>: {doc}"} | |
| ] | |
| tokenized_message = tokenizer.apply_chat_template( | |
| text, tokenize=True, add_generation_prompt=False, enable_thinking=False | |
| ) | |
| final_tokens = tokenized_message[:MAX_LENGTH - len(SUFFIX_TOKENS)] + SUFFIX_TOKENS | |
| messages.append(TokensPrompt(prompt_token_ids=final_tokens)) | |
| outputs = await llm.generate(messages, sampling_params, use_tqdm=False) | |
| scores = [] | |
| for output in outputs: | |
| final_logprobs = output.outputs[0].logprobs[-1] | |
| true_logit = final_logprobs.get(TRUE_TOKEN_ID, -100) | |
| false_logit = final_logprobs.get(FALSE_TOKEN_ID, -100) | |
| true_score = math.exp(true_logit.logprob if hasattr(true_logit, 'logprob') else true_logit) | |
| false_score = math.exp(false_logit.logprob if hasattr(false_logit, 'logprob') else false_logit) | |
| score = true_score / (true_score + false_score) | |
| scores.append(score) | |
| results = [ | |
| RerankResult(document=doc, score=score, index=i) | |
| for i, (doc, score) in enumerate(zip(request.documents, scores)) | |
| ] | |
| results.sort(key=lambda x: x.score, reverse=True) | |
| if request.top_n: | |
| results = results[:request.top_n] | |
| return RerankResponse(results=results) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment