If you'd like to sign up to be notified of future SciPy releases, here's how.
- Open our repository home page.
- Make sure you're signed into GitHub.
- Click Watch.
- Click Custom.
- Check the 'Releases' box.
// command gcc -Wall -Wextra -pedantic test_sgnd.c -lm -o test_sgnd_c && ./test_sgnd_c | |
#include <stdio.h> | |
#include <math.h> | |
// Test sgnd = dp*(dx/ABS(dx)) for all combinations of [1, 0, -0, 1] | |
int main(void) | |
{ | |
const double dp[4] = { 1.0, 0.0, -0.0, -1.0 }; | |
const double dx[4] = { 1.0, 0.0, -0.0, -1.0 }; |
FROM archlinux:latest | |
RUN pacman -Syu --noconfirm git base-devel | |
RUN useradd nodell \ | |
&& mkdir /builddir \ | |
&& chown nodell:nodell /builddir | |
USER nodell | |
WORKDIR /builddir | |
RUN git clone https://aur.archlinux.org/python-scipy-mkl-tbb.git | |
USER root | |
RUN pacman -Su --noconfirm cython gcc-fortran meson-python pybind11 python-build python-installer python-pythran python-pytest python-hypothesis |
(1.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j) (0.000000000000000000e+00+0.000000000000000000e+00j |
# 1.14.1 was benchmarked outside of SciPy's build directory | |
# It was done with the following command | |
for i in $(seq 1 7); do python3 bug-22655b.py; done | |
# This runs the benchmark fewer times than normal, but this is fine because 1.14.1 is very clearly faster. |
If you'd like to sign up to be notified of future SciPy releases, here's how.
// ==UserScript== | |
// @name Remove Search Pulsing | |
// @version 1 | |
// @grant none | |
// @match https://stackoverflow.com/* | |
// ==/UserScript== | |
(new MutationObserver(check)).observe(document, {childList: true, subtree: true}); |
import numpy as np | |
import cv2 | |
import scipy.ndimage | |
import matplotlib.pyplot as plt | |
img = cv2.imread('HjJto.jpg') | |
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
blue = np.array((81, 93, 147)).reshape(1, 1, 3) | |
rmse = np.sqrt(((img_rgb - blue)**2).mean(axis=2)) |
concatenated = data[['day', 'month', 'year', 'time']].astype(str).agg(' '.join, axis=1) | |
data['date'] = pd.to_datetime(concatenated) |
user www-data; | |
worker_processes auto; | |
pid /run/nginx/nginx.pid; # only line changed from default | |
include /etc/nginx/modules-enabled/*.conf; | |
events { | |
worker_connections 768; | |
# multi_accept on; | |
} |