Created
September 17, 2020 13:54
-
-
Save nikola-j/f1a3e124a1473e54003bfc24a37ae362 to your computer and use it in GitHub Desktop.
Plot diverse labels for segmentation image
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def color_map(N=256, normalized=True): | |
def bitget(byteval, idx): | |
return (byteval & (1 << idx)) != 0 | |
dtype = 'float32' if normalized else 'uint8' | |
cmap = np.zeros((N, 3), dtype=dtype) | |
for i in range(N): | |
r = g = b = 0 | |
c = i | |
for j in range(8): | |
r = r | (bitget(c, 0) << 7 - j) | |
g = g | (bitget(c, 1) << 7 - j) | |
b = b | (bitget(c, 2) << 7 - j) | |
c = c >> 3 | |
cmap[i] = np.array([r, g, b]) | |
cmap = cmap / 255 if normalized else cmap | |
return ListedColormap(cmap) | |
num_cats = 4 | |
cmap = color_map(num_cats) | |
cats = ['cat'] * num_cats #List of categories | |
def make_plot(orig_im, res): | |
global cats, cmap | |
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(20, 10)) | |
im_plt = ax[0].imshow(np.array(orig_im)) | |
cax = ax[1].imshow(res, cmap=cmap, vmax=num_cats, vmin=0) | |
# Add colorbar, make sure to specify tick locations to match desired ticklabels | |
cbar = fig.colorbar(cax, ticks=np.linspace(0.5, num_cats-0.5, num_cats)) | |
cbar.ax.set_yticklabels(cats) # vertically oriented colorbar | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment