Created
September 13, 2024 07:46
-
-
Save nnathan/cb272ac5cfd59c2223b6c5ca2080899c to your computer and use it in GitHub Desktop.
Code demonstrating modulo bias
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Code based on excellent article: | |
# https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/ | |
# by Yolan Romailler at Kudelski Security | |
import pandas | |
import os | |
# modulo bias | |
values = [] | |
while len(values) <= 1000000: | |
x = int.from_bytes(os.urandom(1), byteorder='little') | |
values.append(x % 107) | |
s = pandas.DataFrame({'value':values}) | |
pandas.DataFrame.plot(s).hist(bins=107).get_figure().savefig('modulo-bias.pdf') | |
# rejection sampling | |
values = [] | |
while len(values) <= 1000000: | |
x = int.from_bytes(os.urandom(1), byteorder='little') | |
if x < 107: values.append(x % 107) | |
s = pandas.DataFrame({'value':values}) | |
pandas.DataFrame.plot(s).hist(bins=107).get_figure().savefig('rejection-sampling.pdf') | |
# using large random number (32b) | |
values = [] | |
while len(values) <= 1000000: | |
x = int.from_bytes(os.urandom(32), byteorder='little') | |
values.append(x % 107) | |
s = pandas.DataFrame({'value':values}) | |
pandas.DataFrame.plot(s).hist(bins=107).get_figure().savefig('large-random.pdf') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment