Skip to content

Instantly share code, notes, and snippets.

@notsobad
Last active July 24, 2025 07:27
Show Gist options
  • Save notsobad/6189c9b735a4d7525a1e0a5b10b7cf5f to your computer and use it in GitHub Desktop.
Save notsobad/6189c9b735a4d7525a1e0a5b10b7cf5f to your computer and use it in GitHub Desktop.
# TODO: import the required dependencies
import pandas as pd

# Write code here
sql_query = """
    SELECT country, revenue 
    FROM table_3196ce98cf3ce3223735e1d61022e9d2 
    ORDER BY revenue DESC 
    LIMIT 5;
"""
top_countries_df = execute_sql_query(sql_query)

# Declare result var
result = {
    "type": "dataframe",
    "value": top_countries_df
}
<tables>
<table dialect="duckdb" table_name="table_1000_companies" columns="[{"name": "R&D Spend", "type": "float", "description": null, "expression": null, "alias": null}, {"name": "Administration", "type": "float", "description": null, "expression": null, "alias": null}, {"name": "Marketing Spend", "type": "float", "description": null, "expression": null, "alias": null}, {"name": "State", "type": "string", "description": null, "expression": null, "alias": null}, {"name": "Profit", "type": "float", "description": null, "expression": null, "alias": null}]" dimensions="1000x5">
R&D Spend,Administration,Marketing Spend,State,Profit
165349.2,136897.8,471784.1,New York,192261.83
162597.7,151377.59,443898.53,California,191792.06
153441.51,101145.55,407934.54,Florida,191050.39
144372.41,118671.85,383199.62,New York,182901.99
142107.34,91391.77,366168.42,Florida,166187.94
</table>
</tables>
You are already provided with the following functions that you can call:
<function>
def execute_sql_query(sql_query: str) -> pd.Dataframe
"""This method connects to the database, executes the sql query and returns the dataframe"""
</function>
Update this initial code:
```python
# TODO: import the required dependencies
import pandas as pd
# Write code here
# Declare result var:
type (possible values "string", "number", "dataframe", "plot"). Examples: { "type": "string", "value": f"The highest salary is {highest_salary}." } or { "type": "number", "value": 125 } or { "type": "dataframe", "value": pd.DataFrame({...}) } or { "type": "plot", "value": "temp_chart.png" }
```
### QUERY
哪些公司的市场营销投入占比最高?
At the end, declare "result" variable as a dictionary of type and value.
Generate python code and return full updated code:
### Note: Use only relevant table for query and do aggregation, sorting, joins and grouby through sql query
<tables>
<table dialect="duckdb" table_name="table_3196ce98cf3ce3223735e1d61022e9d2" columns="[{"name": "country", "type": "string", "description": null, "expression": null, "alias": null}, {"name": "revenue", "type": "integer", "description": null, "expression": null, "alias": null}]" dimensions="10x2">
country,revenue
United States,5000
United Kingdom,3200
France,2900
Germany,4100
Italy,2300
</table>
</tables>
You are already provided with the following functions that you can call:
<function>
def execute_sql_query(sql_query: str) -> pd.Dataframe
"""This method connects to the database, executes the sql query and returns the dataframe"""
</function>
Update this initial code:
```python
# TODO: import the required dependencies
import pandas as pd
# Write code here
# Declare result var:
type (possible values "string", "number", "dataframe", "plot"). Examples: { "type": "string", "value": f"The highest salary is {highest_salary}." } or { "type": "number", "value": 125 } or { "type": "dataframe", "value": pd.DataFrame({...}) } or { "type": "plot", "value": "temp_chart.png" }
```
### QUERY
Which are the top 5 countries by sales?
At the end, declare "result" variable as a dictionary of type and value.
Generate python code and return full updated code:
### Note: Use only relevant table for query and do aggregation, sorting, joins and grouby through sql query
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment