-
-
Save nsadawi/d2c2eaab4e7a7f2dd09363545882ce42 to your computer and use it in GitHub Desktop.
An implementation of a neural network from scratch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def sigmoid(x): | |
return 1 / (1 + np.exp(-x)) | |
def neural_network(X, y): | |
learning_rate = 0.1 | |
W1 = np.random.rand(2, 4) | |
W2 = np.random.rand(4, 1) | |
for epoch in range(10000): | |
layer1 = sigmoid(np.dot(X, W1)) | |
output = sigmoid(np.dot(layer1, W2)) | |
error = (y - output) | |
delta2 = 2 * error * (output * (1 - output)) | |
delta1 = delta2.dot(W2.T) * (layer1 * (1 - layer1)) | |
W2 += learning_rate * layer1.T.dot(delta2) | |
W1 += learning_rate * X.T.dot(delta1) | |
return np.round(output).flatten() | |
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) | |
print("OR", neural_network(X, np.array([[0, 1, 1, 1]]).T)) | |
print("AND", neural_network(X, np.array([[0, 0, 0, 1]]).T)) | |
print("XOR", neural_network(X, np.array([[0, 1, 1, 0]]).T)) | |
print("NAND", neural_network(X, np.array([[1, 1, 1, 0]]).T)) | |
print("NOR", neural_network(X, np.array([[1, 0, 0, 0]]).T)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment