Skip to content

Instantly share code, notes, and snippets.

@ntkathole
Created April 30, 2025 04:12
Show Gist options
  • Save ntkathole/ca5587af83d43937df84eeecb1a96f9f to your computer and use it in GitHub Desktop.
Save ntkathole/ca5587af83d43937df84eeecb1a96f9f to your computer and use it in GitHub Desktop.
Examples for dummy timestamps
# Exmaple 1 : Sample File based data creation
import pandas as pd
from datetime import datetime
from feast import Entity, FeatureView, Feature, ValueType, Field, FileSource
from feast.types import String
df = pd.DataFrame({
"employee_id": [1, 2],
"department": ["Engineering", "HR"],
"dummy_event_timestamp": [datetime(2024, 1, 1)] * 2
})
# Save to file
df.to_parquet("employee_metadata.parquet", index=False)
# Feature Definition
employee = Entity(name="employee_id", join_keys=["employee_id"])
source = FileSource(
path="employee_metadata.parquet",
timestamp_field="dummy_event_timestamp"
)
employee_metadata_fv = FeatureView(
name="employee_metadata",
entities=["employee_id"],
ttl=None,
schema=[
Feature(name="department", dtype=String),
],
source=source,
online=True,
)
=========================================================
# Exmaple 2 : Sample PostgreSQL based data creation
# Create a table with dummy timestamps:
CREATE TABLE employee_metadata (
employee_id INT PRIMARY KEY,
department TEXT,
dummy_event_timestamp TIMESTAMP DEFAULT '2024-01-01'
);
INSERT INTO employee_metadata (employee_id, department)
VALUES (1, 'Engineering'), (2, 'HR');
# Feature Definition
postgres_source = PostgreSQLSource(
name="employee_metadata_source",
query="SELECT * FROM employee_metadata",
timestamp_field="dummy_event_timestamp"
)
# Feature view with dummy timestamp
employee_metadata_fv = FeatureView(
name="employee_metadata",
entities=["employee_id"],
ttl=None,
schema=[
Field(name="department", dtype=String),
],
source=postgres_source,
online=True,
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment