Last active
January 21, 2022 02:07
-
-
Save odds-get-evened/11e23e465d495d597dfbb83fb74946ec to your computer and use it in GitHub Desktop.
a simple neuron model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package org.white5moke; | |
import org.apache.commons.lang3.math.NumberUtils; | |
import org.hipparchus.analysis.function.Sigmoid; | |
import org.hipparchus.analysis.function.Tanh; | |
import org.openscience.cdk.math.RandomNumbersTool; | |
import java.security.SecureRandom; | |
import java.time.Instant; | |
import java.time.ZoneId; | |
import java.util.*; | |
class Neuron { | |
public List<NeuralInput> inputs = new ArrayList<NeuralInput>(); | |
public Neuron() {} | |
} | |
class Listener5 { | |
public Listener5() {} | |
} | |
class Sender5 { | |
public Sender5() {} | |
} | |
class Activation { | |
public enum activationType { | |
TANH, SIGMOID | |
}; | |
private String type; | |
private double weight = 0.0; | |
public Activation() { | |
setType(getRandomType()); | |
setWeight(new Random().doubles(-1.0, 1.0).findFirst().getAsDouble()); | |
trigger(); | |
} | |
public void trigger() { | |
switch (activationType.valueOf(getType())) { | |
case TANH -> { | |
Tanh t = new Tanh(); | |
setWeight((float) t.value(getWeight())); | |
} | |
case SIGMOID -> { | |
Sigmoid s = new Sigmoid(-1, 1); | |
setWeight((float) s.value(getWeight())); | |
} | |
default -> {} | |
} | |
} | |
private String getRandomType() { | |
List<activationType> v = List.of(activationType.values()); | |
int size = v.size(); | |
Random r = new Random(); | |
return v.get(r.nextInt(size)).toString(); | |
} | |
public String getType() { | |
return type; | |
} | |
public void setType(String type) { | |
this.type = type; | |
} | |
public double getWeight() { | |
return weight; | |
} | |
public void setWeight(double weight) { | |
this.weight = weight; | |
} | |
} | |
class NeuralInput { | |
public String id; | |
public double weight; | |
public List<Listener5> listener; | |
public Sender5 sender; | |
public NeuralInput() throws InterruptedException { | |
while(true) { | |
// use a random string token for identifier | |
setId(generateToken()); | |
Activation activation = new Activation(); | |
setWeight(activation.getWeight()); | |
int t = (int) Math.floor(getWeight() * 10_000); | |
System.out.println(String.format("%16s|%28s|%8s|%32s", | |
getId(), | |
getWeight(), | |
activation.getType(), | |
Instant.now().atZone(ZoneId.of("UTC")) | |
)); | |
Thread.sleep(Math.abs(t)); | |
} | |
} | |
public String getId() { | |
return id; | |
} | |
public void setId(String id) { | |
this.id = id; | |
} | |
public double getWeight() { | |
return weight; | |
} | |
public void setWeight(double weight) { | |
this.weight = weight; | |
} | |
public static String generateToken() { | |
SecureRandom r = new SecureRandom(); | |
byte[] b = new byte[20]; | |
r.nextBytes(b); | |
Base64.Encoder encoder = Base64.getUrlEncoder().withoutPadding(); | |
return encoder.encodeToString(b); | |
} | |
} | |
public class App { | |
public App(int p) throws InterruptedException { | |
new NeuralInput(); | |
} | |
public static void main(String[] args) throws InterruptedException { | |
new App(Integer.parseInt(args[0])); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment