Created
December 21, 2012 09:44
Revisions
-
oseledets created this gist
Dec 21, 2012 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,47 @@ { "metadata": { "name": "pbe" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": "$\\beta(i_1,j_1,k_1,i-i_1,j-j_1,k-k_1) \\approx \\sum_{\\alpha=1}^r \\Phi_{\\alpha}(i_1,j_1,k_1)\\Phi_{\\alpha}(i-i_1,j-j_1,k-k_1)$\n\nFor $n = 16$ $r = 6$ (for accuracy $\\varepsilon=10^{-6}$)\nReduction in storage: \nInstead of \n$n^6$ we have $2n^3 r$\n\n$16^6 = 16777216$, whereas \n$2 \\cdot 16^3 = 49152$ " }, { "cell_type": "markdown", "metadata": {}, "source": "$$\\phi(i,j,k) = \\sum_{i_1=1}^{i-1} \\sum_{j_1=1}^{j-1} \\sum_{k_1=1}^{k-1} \\beta(i_1,j_1,k_1,i-i_1,j-j_1,k-k_1) F(i_1,j_1,k_1) F(i-i_1,j-j_1,k-k_1)$$\n\n$$\\phi(i,j,k) = \\sum_{\\alpha=1}^r \\Big(\\sum_{i_1=1}^{i-1}\\sum_{j_1=1}^{j-1} \\sum_{k_1=1}^{k-1} \\Phi_{\\alpha}(i_1,j_1,k_1)\\Phi_{\\alpha}(i-i_1,j-j_1,k-k_1)F(i_1,j_1,k_1) F(i-i_1,j-j_1,k-k_1)\\Big)$$\n\n" }, { "cell_type": "markdown", "metadata": {}, "source": "\\begin{equation}\n\\phi_{\\alpha}(i,j,k) = \\sum_{i_1=1}^{i-1}\\sum_{j_1=1}^{j-1} \\sum_{k_1=1}^{k-1} \\Phi_{\\alpha}(i_1,j_1,k_1)\\Phi_{\\alpha}(i-i_1,j-j_1,k-k_1)F(i_1,j_1,k_1) F(i-i_1,j-j_1,k-k_1)\n\\end{equation}\n\nWe can introduce new variable: \n\\begin{equation}\n\\widehat{F}_{\\alpha}(i,j,k) = \\Phi_{\\alpha}(i,j,k) F(i,j,k)\n\\end{equation}\n\n\\begin{equation}\n\\phi_{\\alpha}(i,j,k) = \\sum_{i_1=1}^{i-1}\\sum_{j_1=1}^{j-1} \\sum_{k_1=1}^{k-1} \\widehat{F}_{\\alpha}(i_1,j_1,k_1) \\widehat{F}_{\\alpha}(i-i_1,j-j_1,k-k_1)\n\\end{equation}\n\nThis is a convolution, and it can be done in $\\mathcal{O}(n^3 \\log n)$ operations (using the FFT). \nThe total complexity would be $\\mathcal{O}(n^3 \\log n r)$ operations. \n\nIt was $\\mathcal{O}(n^6)$ operations for the loop.\n\n" }, { "cell_type": "markdown", "metadata": {}, "source": "$$v(i) = \\sum_{j=1}^{i-1} f(j) g(i-j)$$ \n\n$$ G = \\begin{pmatrix}\n0 & 0 & 0 & 0 \\\\\ng_1 & 0 & 0 & 0\\\\\ng_2 & g_1 & 0 & 0 \\\\\ng_3 & g_2 & g_1 & 0\n\\end{pmatrix},\n$$\n\nThen\n$$\n v = Gf.\n$$\n\n\\begin{equation} \nG = \\begin{pmatrix}\n0 & 0 & 0 & 0 & g_3 & g_2 & g_1\\\\\ng_1 & 0 & 0 & 0 & 0 & g_3 & g_2\\\\\ng_2 & g_1 & 0 & 0 & 0 & 0 & g_3 \\\\\ng_3 & g_2 & g_1 & 0 & 0 & 0 & 0 \\\\\n0 & g_3 & g_2 & g_1& 0 & 0 & 0 \\\\ \n0 & 0 & g_3 & g_2& g_1 & 0 & 0 \\\\\n0 & 0 & 0 & g_3& g_2 & g_1 & 0 \\\\\n\\end{pmatrix},\n\\end{equation}\n" }, { "cell_type": "markdown", "metadata": {}, "source": "# GIT" }, { "cell_type": "code", "collapsed": false, "input": "", "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }