Created
December 21, 2012 09:44
-
-
Save oseledets/4351798 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "pbe" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "$\\beta(i_1,j_1,k_1,i-i_1,j-j_1,k-k_1) \\approx \\sum_{\\alpha=1}^r \\Phi_{\\alpha}(i_1,j_1,k_1)\\Phi_{\\alpha}(i-i_1,j-j_1,k-k_1)$\n\nFor $n = 16$ $r = 6$ (for accuracy $\\varepsilon=10^{-6}$)\nReduction in storage: \nInstead of \n$n^6$ we have $2n^3 r$\n\n$16^6 = 16777216$, whereas \n$2 \\cdot 16^3 = 49152$ " | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "$$\\phi(i,j,k) = \\sum_{i_1=1}^{i-1} \\sum_{j_1=1}^{j-1} \\sum_{k_1=1}^{k-1} \\beta(i_1,j_1,k_1,i-i_1,j-j_1,k-k_1) F(i_1,j_1,k_1) F(i-i_1,j-j_1,k-k_1)$$\n\n$$\\phi(i,j,k) = \\sum_{\\alpha=1}^r \\Big(\\sum_{i_1=1}^{i-1}\\sum_{j_1=1}^{j-1} \\sum_{k_1=1}^{k-1} \\Phi_{\\alpha}(i_1,j_1,k_1)\\Phi_{\\alpha}(i-i_1,j-j_1,k-k_1)F(i_1,j_1,k_1) F(i-i_1,j-j_1,k-k_1)\\Big)$$\n\n" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "\\begin{equation}\n\\phi_{\\alpha}(i,j,k) = \\sum_{i_1=1}^{i-1}\\sum_{j_1=1}^{j-1} \\sum_{k_1=1}^{k-1} \\Phi_{\\alpha}(i_1,j_1,k_1)\\Phi_{\\alpha}(i-i_1,j-j_1,k-k_1)F(i_1,j_1,k_1) F(i-i_1,j-j_1,k-k_1)\n\\end{equation}\n\nWe can introduce new variable: \n\\begin{equation}\n\\widehat{F}_{\\alpha}(i,j,k) = \\Phi_{\\alpha}(i,j,k) F(i,j,k)\n\\end{equation}\n\n\\begin{equation}\n\\phi_{\\alpha}(i,j,k) = \\sum_{i_1=1}^{i-1}\\sum_{j_1=1}^{j-1} \\sum_{k_1=1}^{k-1} \\widehat{F}_{\\alpha}(i_1,j_1,k_1) \\widehat{F}_{\\alpha}(i-i_1,j-j_1,k-k_1)\n\\end{equation}\n\nThis is a convolution, and it can be done in $\\mathcal{O}(n^3 \\log n)$ operations (using the FFT). \nThe total complexity would be $\\mathcal{O}(n^3 \\log n r)$ operations. \n\nIt was $\\mathcal{O}(n^6)$ operations for the loop.\n\n" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "$$v(i) = \\sum_{j=1}^{i-1} f(j) g(i-j)$$ \n\n$$ G = \\begin{pmatrix}\n0 & 0 & 0 & 0 \\\\\ng_1 & 0 & 0 & 0\\\\\ng_2 & g_1 & 0 & 0 \\\\\ng_3 & g_2 & g_1 & 0\n\\end{pmatrix},\n$$\n\nThen\n$$\n v = Gf.\n$$\n\n\\begin{equation} \nG = \\begin{pmatrix}\n0 & 0 & 0 & 0 & g_3 & g_2 & g_1\\\\\ng_1 & 0 & 0 & 0 & 0 & g_3 & g_2\\\\\ng_2 & g_1 & 0 & 0 & 0 & 0 & g_3 \\\\\ng_3 & g_2 & g_1 & 0 & 0 & 0 & 0 \\\\\n0 & g_3 & g_2 & g_1& 0 & 0 & 0 \\\\ \n0 & 0 & g_3 & g_2& g_1 & 0 & 0 \\\\\n0 & 0 & 0 & g_3& g_2 & g_1 & 0 \\\\\n\\end{pmatrix},\n\\end{equation}\n" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "# GIT" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment