Created
April 2, 2019 11:34
-
-
Save oximenvn/bd73788e35f326e75c09e596015d81ed to your computer and use it in GitHub Desktop.
Bai4
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package main | |
import ( | |
"fmt" | |
"math" | |
"math/rand" | |
"time" | |
) | |
/* | |
* Point | |
*/ | |
type Point struct { | |
X float64 | |
Y float64 | |
ClusterId int | |
} | |
func (a *Point) Distance(b Point) float64 { | |
xx := math.Pow(float64(a.X-b.X), 2) | |
yy := math.Pow(float64(a.Y-b.Y), 2) | |
return math.Sqrt(xx + yy) | |
} | |
func (a Point) String() string { | |
return fmt.Sprintf("{%v, %v}",a.X, a.Y) | |
} | |
/* | |
* Cluster | |
*/ | |
type Cluster struct { | |
Center Point | |
Points []Point | |
} | |
func (cluster *Cluster) Calculate_centroid(){ | |
var x, y float64 | |
var clusterCount = len(cluster.Points) | |
for i := 0; i < clusterCount; i++ { | |
x = x + cluster.Points[i].X | |
y = y + cluster.Points[i].Y | |
} | |
cluster.Points = []Point{} | |
cluster.Center = Point{x / float64(clusterCount), y / float64(clusterCount), -1} | |
} | |
func (cluster Cluster) String() string { | |
return fmt.Sprintf("Cluster centroid %v --> %v \n",cluster.Center, cluster.Points) | |
} | |
/* | |
* K-mean | |
*/ | |
/* | |
*Step 1: Init k clusters | |
*/ | |
func initClusters(dataset []Point,k int) (clusters []Cluster) { | |
rand.Seed(time.Now().UnixNano()) | |
randlist := make(map[int]int) | |
for len(randlist)<k{ | |
randlist[rand.Intn(len(dataset))] +=1 | |
} | |
for i := range randlist { | |
clusters = append(clusters, Cluster{ dataset[i], []Point{}}) | |
} | |
return | |
} | |
/* | |
*Step 2: Assign objects to their closest cluster center according to the Euclidean distance function. | |
*/ | |
func assignClusters(dataset []Point, k int, clusters []Cluster) (hasChanged bool) { | |
hasChanged = false | |
for i := 0; i < len(dataset); i++ { | |
var minDist float64 = dataset[i].Distance(clusters[0].Center) | |
var updatedClusterIndex int | |
for j := 0; j < len(clusters); j++ { | |
tmpDist := dataset[i].Distance(clusters[j].Center) | |
if tmpDist < minDist { | |
minDist = tmpDist | |
updatedClusterIndex = j | |
} | |
} | |
if dataset[i].ClusterId != updatedClusterIndex { | |
hasChanged = true | |
} | |
dataset[i].ClusterId = updatedClusterIndex | |
clusters[updatedClusterIndex].Points = append(clusters[updatedClusterIndex].Points, dataset[i]) | |
} | |
return hasChanged | |
} | |
/* | |
*Step 3: Calculate the centroid of all objects in each cluster. | |
*/ | |
func renewCentroid(clusters []Cluster) { | |
for i := 0; i < len(clusters); i++ { | |
clusters[i].Calculate_centroid() | |
} | |
} | |
/* | |
*Run K-mean | |
*/ | |
func Kmean(dataset []Point, k int) []Cluster { | |
clusters := initClusters(dataset, k) | |
for assignClusters(dataset, k, clusters) { | |
renewCentroid(clusters) | |
} | |
return clusters | |
} | |
func main() { | |
var dataset []Point | |
dataset = append(dataset,Point{X:1,Y:1}) | |
dataset = append(dataset,Point{X:1,Y:2}) | |
dataset = append(dataset,Point{X:2,Y:1}) | |
dataset = append(dataset,Point{X:2,Y:2}) | |
dataset = append(dataset,Point{X:4,Y:4}) | |
dataset = append(dataset,Point{X:4,Y:5}) | |
dataset = append(dataset,Point{X:5,Y:4}) | |
dataset = append(dataset,Point{X:5,Y:5}) | |
dataset = append(dataset,Point{X:7,Y:2}) | |
dataset = append(dataset,Point{X:7,Y:3}) | |
dataset = append(dataset,Point{X:8,Y:2}) | |
dataset = append(dataset,Point{X:8,Y:3}) | |
clusters := Kmean(dataset, 3) | |
fmt.Println(clusters) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment