Created
April 26, 2018 12:06
-
-
Save pabloformoso/ee9643a6444404a6fac0a4a81c0785b9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def VGG16(weights_path=None): | |
model = Sequential() | |
model.add(ZeroPadding2D((1,1),input_shape=(224,224,3))) | |
model.add(Convolution2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')) | |
model.add(Convolution2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')) | |
model.add(MaxPooling2D((2,2), strides=(2,2), name='block1_pool')) | |
model.add(Convolution2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')) | |
model.add(Convolution2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')) | |
model.add(MaxPooling2D((2,2), strides=(2,2), name='block2_pool')) | |
model.add(Convolution2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')) | |
model.add(Convolution2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')) | |
model.add(Convolution2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')) | |
model.add(MaxPooling2D((2,2), strides=(2,2), name='block3_pool')) | |
model.add(Convolution2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')) | |
model.add(Convolution2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')) | |
model.add(Convolution2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')) | |
model.add(MaxPooling2D((2,2), strides=(2,2), name='block4_pool')) | |
model.add(Convolution2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')) | |
model.add(Convolution2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')) | |
model.add(Convolution2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')) | |
model.add(MaxPooling2D((2,2), strides=(2,2), name='block5_pool')) | |
model.add(Flatten(name='flatten')) | |
model.add(Dense(4096, activation='relu', name='fully_connected_1')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(4096, activation='relu', name='fully_connected_2')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(1000, activation='softmax', name='predictions')) | |
if weights_path: | |
model.load_weights(weights_path) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment