Last active
November 30, 2017 14:25
-
-
Save pantor/6094d0259938bd5c190c3fb19f89c0d3 to your computer and use it in GitHub Desktop.
Images Transformation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python2 | |
from __future__ import print_function | |
from __future__ import division | |
from __future__ import absolute_import | |
import os | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from skimage import io | |
from skimage import transform | |
path = '' # TODO Fill path | |
file1 = 'LM15_aussen_mark_4x.tiff' | |
file2 = 'heatmap2.tiff' | |
output_filename = 'test.png' | |
# Load images | |
img1 = io.imread(os.path.join(path, file1)) | |
img2 = io.imread(os.path.join(path, file2)) | |
# Show images | |
fig, ax = plt.subplots(ncols=3, figsize=(15, 6)) | |
ax[0].imshow(img1, picker=True) | |
ax[0].set_title('Image 1') | |
ax[1].imshow(img2, picker=True) | |
ax[1].set_title('Image 2') | |
ax[2].set_title('Reconstructed Image 1') | |
plt.tight_layout() | |
# Points data structure | |
img_points = { | |
0: [], # Image 1 | |
1: [], # Image 2 | |
} | |
def on_click(event): | |
# Save points in subplot list | |
point = [event.mouseevent.xdata, event.mouseevent.ydata] | |
subplot = np.where(ax == event.artist.axes)[0][0] | |
img_points[subplot].append(point) | |
# Print and add label in image | |
print('New event at x={} y={} subplot={}'.format(point[0], point[1], subplot)) | |
ax[subplot].scatter(point[0], point[1], color='red', s=20) | |
ax[subplot].text(point[0] + 12, point[1] + 12, str(len(img_points[subplot])), color='red', fontsize=13) | |
# Calculate transformation, show and save image | |
if len(img_points[0]) > 2 and len(img_points[0]) == len(img_points[1]): | |
transformation = transform.estimate_transform('similarity', np.array(img_points[0]), np.array(img_points[1])) | |
reconstructed_img = transform.warp(img2, transformation, output_shape=img1.shape) | |
ax[2].cla() # Clear subplot | |
ax[2].imshow(reconstructed_img) | |
ax[2].set_xlim(0, reconstructed_img.shape[1]) # Limits are somehow not set automatically | |
ax[2].set_ylim(reconstructed_img.shape[0], 0) | |
io.imsave(os.path.join(path, output_filename), reconstructed_img) | |
else: | |
print('Need either more points or the same number of points on each image.') | |
plt.show() | |
fig.canvas.mpl_connect('pick_event', on_click) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment