Last active
October 24, 2022 11:43
-
-
Save pat-alt/6f0dfeb471dca927387a46f93ab5ee1b to your computer and use it in GitHub Desktop.
Simple, inductive conformal classification in Julia. Code snippet from [ConformalPrediction.jl](https://github.com/pat-alt/ConformalPrediction.jl).
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Simple | |
"The `SimpleInductiveClassifier` is the simplest approach to Inductive Conformal Classification. Contrary to the [`NaiveClassifier`](@ref) it computes nonconformity scores using a designated calibration dataset." | |
mutable struct SimpleInductiveClassifier{Model <: Supervised} <: ConformalSet | |
model::Model | |
coverage::AbstractFloat | |
scores::Union{Nothing,AbstractArray} | |
heuristic::Function | |
train_ratio::AbstractFloat | |
end | |
function SimpleInductiveClassifier(model::Supervised; coverage::AbstractFloat=0.95, heuristic::Function=f(y, ŷ)=1.0-ŷ, train_ratio::AbstractFloat=0.5) | |
return SimpleInductiveClassifier(model, coverage, nothing, heuristic, train_ratio) | |
end | |
@doc raw""" | |
MMI.fit(conf_model::SimpleInductiveClassifier, verbosity, X, y) | |
For the [`SimpleInductiveClassifier`](@ref) nonconformity scores are computed as follows: | |
`` | |
S_i^{\text{CAL}} = s(X_i, Y_i) = h(\hat\mu(X_i), Y_i), \ i \in \mathcal{D}_{\text{calibration}} | |
`` | |
A typical choice for the heuristic function is ``h(\hat\mu(X_i), Y_i)=1-\hat\mu(X_i)_{Y_i}`` where ``\hat\mu(X_i)_{Y_i}`` denotes the softmax output of the true class and ``\hat\mu`` denotes the model fitted on training data ``\mathcal{D}_{\text{train}}``. The simple approach only takes the softmax probability of the true label into account. | |
""" | |
function MMI.fit(conf_model::SimpleInductiveClassifier, verbosity, X, y) | |
# Data Splitting: | |
train, calibration = partition(eachindex(y), conf_model.train_ratio) | |
Xtrain = MLJ.matrix(X)[train,:] | |
ytrain = y[train] | |
Xcal = MLJ.matrix(X)[calibration,:] | |
ycal = y[calibration] | |
# Training: | |
fitresult, cache, report = MMI.fit(conf_model.model, verbosity, MMI.reformat(conf_model.model, Xtrain, ytrain)...) | |
# Nonconformity Scores: | |
ŷ = pdf.(MMI.predict(conf_model.model, fitresult, Xcal), ycal) | |
conf_model.scores = @.(conf_model.heuristic(ycal, ŷ)) | |
return (fitresult, cache, report) | |
end | |
@doc raw""" | |
MMI.predict(conf_model::SimpleInductiveClassifier, fitresult, Xnew) | |
For the [`SimpleInductiveClassifier`](@ref) prediction sets are computed as follows, | |
`` | |
\hat{C}_{n,\alpha}(X_{n+1}) = \left\{y: s(X_{n+1},y) \le \hat{q}_{n, \alpha}^{+} \{S_i^{\text{CAL}}\} \right\}, \ i \in \mathcal{D}_{\text{calibration}} | |
`` | |
where ``\mathcal{D}_{\text{calibration}}`` denotes the designated calibration data. | |
""" | |
function MMI.predict(conf_model::SimpleInductiveClassifier, fitresult, Xnew) | |
p̂ = MMI.predict(conf_model.model, fitresult, MMI.reformat(conf_model.model, Xnew)...) | |
L = p̂.decoder.classes | |
ŷ = pdf(p̂, L) | |
v = conf_model.scores | |
q̂ = Statistics.quantile(v, conf_model.coverage) | |
ŷ = map(x -> collect(key => 1.0-val <= q̂ ? val : missing for (key,val) in zip(L,x)),eachrow(ŷ)) | |
return ŷ | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment