Created
March 13, 2019 08:49
-
-
Save peter0749/60963a864176ef598fbae5957efd3942 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torch.autograd import Variable | |
from torch.nn import Parameter | |
from torchvision import datasets, transforms | |
class AngleLinear(nn.Module): | |
def __init__(self, in_features, out_features, m = 4): | |
super(AngleLinear, self).__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
self.weight = Parameter(torch.Tensor(in_features,out_features)) | |
self.weight.data.uniform_(-1, 1).renorm_(2,1,1e-5).mul_(1e5) | |
self.m = m | |
self.mlambda = [ | |
lambda x: x**0, | |
lambda x: x**1, | |
lambda x: 2*x**2-1, | |
lambda x: 4*x**3-3*x, | |
lambda x: 8*x**4-8*x**2+1, | |
lambda x: 16*x**5-20*x**3+5*x | |
] | |
def forward(self, input): | |
x = input # size=(B,F) F is feature len | |
w = self.weight # size=(F,Classnum) F=in_features Classnum=out_features | |
ww = w.renorm(2,1,1e-5).mul(1e5) | |
xlen = x.pow(2).sum(1).pow(0.5) # size=B | |
wlen = ww.pow(2).sum(0).pow(0.5) # size=Classnum | |
cos_theta = x.mm(ww) # size=(B,Classnum) | |
cos_theta = cos_theta / xlen.view(-1,1) / wlen.view(1,-1) | |
cos_theta = cos_theta.clamp(-1,1) | |
cos_m_theta = self.mlambda[self.m](cos_theta) | |
theta = Variable(cos_theta.data.acos()) | |
k = (self.m*theta/3.14159265).floor() | |
n_one = k*0.0 - 1 | |
phi_theta = (n_one**k) * cos_m_theta - 2*k | |
cos_theta = cos_theta * xlen.view(-1,1) | |
phi_theta = phi_theta * xlen.view(-1,1) | |
output = (cos_theta,phi_theta) | |
return output # size=(B,Classnum,2) | |
class AngleLoss(nn.Module): | |
def __init__(self, gamma=0, test=False, mode='mean'): | |
super(AngleLoss, self).__init__() | |
self.gamma = gamma | |
self.it = 0 | |
self.LambdaMin = 5.0 | |
self.LambdaMax = 1500.0 | |
self.lamb = 1500.0 | |
self.test = test | |
self.mode = mode | |
def forward(self, input, target): | |
self.it += 1 | |
cos_theta,phi_theta = input | |
target = target.view(-1,1) #size=(B,1) | |
index = cos_theta.data * 0.0 #size=(B,Classnum) | |
index.scatter_(1,target.data.view(-1,1),1) | |
index = index.byte() | |
index = Variable(index) | |
output = cos_theta * 1.0 #size=(B,Classnum) | |
if self.test: | |
output[index] = phi_theta[index] | |
else: | |
self.lamb = max(self.LambdaMin,self.LambdaMax/(1+0.1*self.it )) | |
output[index] -= cos_theta[index]*(1.0+0)/(1+self.lamb) | |
output[index] += phi_theta[index]*(1.0+0)/(1+self.lamb) | |
logpt = F.log_softmax(output, dim=-1) | |
logpt = logpt.gather(1,target) | |
logpt = logpt.view(-1) | |
pt = Variable(logpt.data.exp()) | |
loss = -1 * (1-pt)**self.gamma * logpt | |
if self.mode=='mean': | |
loss = loss.mean() | |
else: | |
loss = loss.sum() | |
return loss | |
class Net(nn.Module): | |
def __init__(self, feature=False): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 20, 5, 1) | |
self.conv2 = nn.Conv2d(20, 50, 5, 1) | |
self.fc1 = nn.Linear(4*4*50, 500) | |
self.fc2 = AngleLinear(500, 10) | |
self.feature = feature | |
def forward(self, x): | |
x = F.relu(self.conv1(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = F.relu(self.conv2(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = x.view(-1, 4*4*50) | |
x = F.relu(self.fc1(x)) | |
if self.feature: | |
return x | |
x = self.fc2(x) | |
return x | |
def train(args, model, device, train_loader, optimizer, epoch): | |
loss_func = AngleLoss() | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
data, target = data.to(device), target.to(device) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = loss_func(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.item())) | |
def test(args, model, device, test_loader): | |
loss_func = AngleLoss(test=True,mode='sum') | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
data, target = data.to(device), target.to(device) | |
output = model(data) | |
test_loss += loss_func(output, target).item() # sum up batch loss | |
pred = output[0].argmax(dim=1, keepdim=True) # get the index of the max probability | |
correct += pred.eq(target.view_as(pred)).sum().item() | |
test_loss /= len(test_loader.dataset) | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) | |
def main(): | |
# Training settings | |
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | |
help='input batch size for training (default: 64)') | |
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | |
help='input batch size for testing (default: 1000)') | |
parser.add_argument('--epochs', type=int, default=10, metavar='N', | |
help='number of epochs to train (default: 10)') | |
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | |
help='learning rate (default: 0.01)') | |
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', | |
help='SGD momentum (default: 0.5)') | |
parser.add_argument('--no-cuda', action='store_true', default=False, | |
help='disables CUDA training') | |
parser.add_argument('--seed', type=int, default=1, metavar='S', | |
help='random seed (default: 1)') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='how many batches to wait before logging training status') | |
parser.add_argument('--save-model', action='store_true', default=False, | |
help='For Saving the current Model') | |
args = parser.parse_args() | |
use_cuda = not args.no_cuda and torch.cuda.is_available() | |
torch.manual_seed(args.seed) | |
device = torch.device("cuda" if use_cuda else "cpu") | |
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} | |
train_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('../data', train=True, download=True, | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.batch_size, shuffle=True, **kwargs) | |
test_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.test_batch_size, shuffle=True, **kwargs) | |
model = Net().to(device) | |
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) | |
for epoch in range(1, args.epochs + 1): | |
train(args, model, device, train_loader, optimizer, epoch) | |
test(args, model, device, test_loader) | |
if (args.save_model): | |
torch.save(model.state_dict(),"mnist_cnn.pt") | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment