Last active
December 23, 2019 16:51
-
-
Save philippmuench/4832a25f8a2693b90e7a9e96edfa9bfd to your computer and use it in GitHub Desktop.
WaveNet genomic
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
trainMinimalFunctionalAPI <- function(path = "example_files/fasta") { | |
library(wavenet) | |
message("Initialize model! This can take a few minutes.") | |
maxlen <- 1000 | |
input <- keras::layer_input(batch_shape = c(64, maxlen, 6)) | |
# https://github.com/ibab/tensorflow-wavenet/blob/master/wavenet/ops.py#L46 | |
first <- keras::layer_conv_1d( | |
object = input, | |
filters = 32, | |
kernel_size = 2, | |
padding = "causal", | |
use_bias = FALSE | |
) | |
skip_connections <- NULL | |
residual_blocks <- 2^rep(1:8, 3) | |
if (length(residual_blocks) == 1) { | |
dilation_rates <- 2^seq_len(residual_blocks) | |
} else { | |
dilation_rates <- residual_blocks | |
} | |
for (i in dilation_rates) { | |
out <- layer_wavenet_dilated_causal_convolution_1d( | |
first, | |
filters = 32, | |
kernel_size = 32, | |
dilation_rate = i | |
) | |
x <- out[[1]] | |
s <- out[[2]] | |
skip_connections <- append(skip_connections, s) | |
} | |
out1 = keras::layer_add(skip_connections) | |
out2 = keras::layer_activation(object = out1, | |
activation = "relu") | |
out3 = keras::layer_conv_1d(object = out2, | |
filters = 32/2L, | |
kernel_size = 1, | |
activation = "relu", | |
use_bias = FALSE) | |
pooling = keras::layer_global_max_pooling_1d(object = out3) | |
dense = keras::layer_dense(object = pooling, 6) | |
output = keras::layer_activation(object = dense, "softmax") | |
model <- keras::keras_model(input, output) | |
summary(model) | |
model %>% keras::compile(loss = "categorical_crossentropy", | |
optimizer = "adam", | |
metrics = c("acc")) | |
gen <- | |
fastaFileGenerator( | |
corpus.dir = path, | |
batch.size = 64, | |
maxlen = maxlen, | |
step = 1, | |
randomFiles = FALSE, | |
seqStart = "l", | |
seqEnd = "l", | |
withinFile = "p", | |
vocabulary = c("l", "p", "a", "c", "g", "t") | |
) | |
message("Start training ...") | |
history <- | |
model %>% keras::fit_generator( | |
generator = gen, | |
steps_per_epoch = 200, | |
max_queue_size = 200, | |
epochs = 50 | |
) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment