Last active
December 11, 2015 05:09
-
-
Save pichenettes/4550369 to your computer and use it in GitHub Desktop.
Combinatorial encoding/decoding
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
def bin_string(n, size): | |
l = ['0'] * size | |
for i in xrange(size): | |
l[size - 1 - i] = '01'[n % 2] | |
n /= 2 | |
return ''.join(l) | |
def gen_binomial_table(n): | |
c = [[1] + [0] * (n - 1)] | |
for i in xrange(1, n + 1): | |
c.append([1] + [c[i - 1][j - 1] + c[i - 1][j] for j in xrange(1, n)]) | |
return c | |
def encode_rank_to_combination(rank, n): | |
num_ones = n / 2 | |
codeword = 0 | |
while num_ones: | |
n = num_ones - 1 | |
while choose_lookup[n + 1][num_ones] <= rank: | |
n += 1 | |
codeword |= (1 << n) | |
rank -= choose_lookup[n][num_ones] | |
num_ones -= 1 | |
return codeword | |
def decode_combination_to_rank(codeword, n): | |
num_ones = 1 | |
result = 0 | |
i = 0 | |
while codeword: | |
if codeword & 1: | |
result += choose_lookup[i][num_ones] | |
num_ones += 1 | |
codeword >>= 1 | |
i += 1 | |
return result | |
if __name__ == '__main__': | |
n = 12 | |
choose_lookup = gen_binomial_table(n) | |
num_words = choose_lookup[n][n / 2] | |
print '%.2f bits to %d balanced bits' % (math.log(num_words) / math.log(2.0), n) | |
print 'Printing coding table' | |
codewords = [encode_rank_to_combination(i, n) for i in xrange(num_words)] | |
for i, codeword in enumerate(codewords): | |
print i, bin_string(codeword, n) | |
print 'Printing decoding table' | |
for codeword in codewords: | |
print bin_string(codeword, n), decode_combination_to_rank(codeword, n) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment