Last active
August 2, 2018 11:57
-
-
Save pratos/013c813f404c3cd50d51947eca16d4f6 to your computer and use it in GitHub Desktop.
Doing EDA R File : Docker For Data Science Blogpost
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
source("./src/load_package.R") | |
flog.info("Loading the German Credit Card Dataset") | |
# Load Dataset | |
german_credit <- read.table("./assets/data/german.data", fileEncoding="UTF-8" , dec = ",") | |
head(german_credit) | |
flog.info("Renaming the Columns") | |
colnames(german_credit) <- c('status', 'duration', 'credit_history', 'purpose', 'credit_amount', 'savings_account', 'employment', 'installment_rate','status_sex', 'guarantors', 'residence', 'property', 'age', 'other_installment', 'housing', 'existing_credits', 'job', 'maintainence_people','telephone', 'foreign', 'rating') | |
# The levels are presents as A* characters. Since we'll be creating a dashboard out of the dataset and models, next few steps are to convert it back to the dataset that we want to view. | |
flog.info("Converting the Levels for the categorical variables...") | |
german_credit$purpose <- ifelse(german_credit$purpose == "A40", "car_new", ifelse(german_credit$purpose == "A41", "car_used", ifelse(german_credit$purpose == "A42", "furnishing", ifelse(german_credit$purpose == "A43", "radio_tv", ifelse(german_credit$purpose == "A44", "domestic_appliances", ifelse(german_credit$purpose == "A45", "repairs", ifelse(german_credit$purpose == "A46", "education", ifelse(german_credit$purpose == "A47", "vacations", ifelse(german_credit$purpose == "A48", "retraining", ifelse(german_credit$purpose == "A49", "business", "others")))))))))) | |
german_credit$savings_account <- ifelse(german_credit$savings_account == "A61", "0_99DM", ifelse(german_credit$savings_account == "A62", "100_499DM", ifelse(german_credit$savings_account == "A63", "500_999DM", ifelse(german_credit$purpose == "A64", "1000DM_Above", "Unknown_No_Savings_account")))) | |
german_credit$employment <- ifelse(german_credit$employment == "A71", "unemployed", ifelse(german_credit$employment == "A72", "less_than_year", ifelse(german_credit$employment == "A73", "1_to_4_years", ifelse(german_credit$employment == "A74", "4_to_7_years", "more_than_7_years")))) | |
german_credit$status_sex <- ifelse(german_credit$status_sex == "A91", "male_divorced_separated", ifelse(german_credit$status_sex == "A92", "female_divorced_separated_married", ifelse(german_credit$status_sex == "A93", "male_single", ifelse(german_credit$status_sex == "A94", "male_married_widowed", "female_single")))) | |
german_credit$guarantors <- ifelse(german_credit$guarantors == "A101", "none", ifelse(german_credit$guarantors == "A102", "co_applicant", "guarantor")) | |
german_credit$property <- ifelse(german_credit$property == "A121", "real_estate", ifelse(german_credit$property == "A122", "building_society_savings_agreement_or_life_insurance", ifelse(german_credit$property == "A123", "car_or_other", "unknown_no_property"))) | |
german_credit$other_installment <- ifelse(german_credit$other_installment == "A141", "bank", ifelse(german_credit$other_installment == "A142", "own", "free")) | |
german_credit$job <- ifelse(german_credit$job == "A171", "unemployed_unskilled_non_resident", ifelse(german_credit$job == "A172", "unskilled_resident" , ifelse(german_credit$job == "A173", "skilled_employee_official", "management_self_employed_highly_qualified_officer"))) | |
german_credit$telephone <- ifelse(german_credit$telephone == "A191", "no", "yes") | |
german_credit$foreign <- ifelse(german_credit$foreign == "A201", "yes", "no") | |
german_credit$housing <- ifelse(german_credit$housing == "A151", "rent", ifelse(german_credit$housing == "A152", "own", "for_free")) | |
german_credit$status <- ifelse(german_credit$status == "A11", "less_than_0DM", ifelse(german_credit$status == "A12", "less_than_200DM", ifelse(german_credit$status == "A13", "greater_than_200DM_for_a_year", "no_account"))) | |
german_credit$credit_history <- ifelse(german_credit$credit_history == "A30","no_credits_or_all_credits_payed", ifelse(german_credit$credit_history == "A31", "all_credits_at_bank_payed", ifelse(german_credit$credit_history == "A32", "existing_credits_paid_back", ifelse(german_credit$credit_history == "A33", "delayed_payment_in_past", "critical_account")))) | |
# hist(german_credit$duration) | |
# hist(log(german_credit$duration)) | |
# | |
# hist(log(german_credit$credit_amount)) | |
# | |
# unique(german_credit$installment_rate) | |
# | |
# unique(german_credit$residence) | |
# | |
# unique(german_credit$age) | |
# hist(german_credit$age) | |
# | |
# hist(german_credit$existing_credits) | |
# unique(german_credit$existing_credits) | |
flog.info("Saving the intermediate file on disk...") | |
saveRDS(german_credit, "./assets/intermediate-files/intermediate_german_data.rds") | |
# Next step would be creating features! |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment