Created
July 27, 2022 12:53
-
-
Save psalz/5f936894a451f25e2b9d1d6f66915307 to your computer and use it in GitHub Desktop.
Print number of unique occurences of clang tidy diagnostics in a given log file
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import sys | |
import re | |
from typing import Dict, Set | |
clang_tidy_log = sys.argv[1] | |
# A clang-tidy diagnostic is of the form: | |
# <path>:<line>:<column>: <warning|error>: <message> [<diagnostic-name(s)>] | |
diagnostic_re = re.compile( | |
r"^([^:]+):(\d+):(\d+): (warning|error): ([^[]+) \[([^]]+)\]") | |
# We keep a set of per file, per line, per column (which is probably overkill) diagnostics to remove duplicates | |
per_file_diagnostics: Dict[str, Dict[int, Dict[int, Set[str]]]] = {} | |
diagnostic_counts: Dict[str, int] = {} | |
diagnostics_parsed: int = 0 | |
duplicates: int = 0 | |
with open(clang_tidy_log) as fd: | |
line = fd.readline() | |
while line: | |
match = diagnostic_re.search(line) | |
if match: | |
diagnostics_parsed += 1 | |
(file, line, column, type, msg, diagnostic) = match.groups() | |
per_file_diagnostics.setdefault(file, {}).setdefault( | |
line, {}).setdefault(column, set()) | |
if diagnostic not in per_file_diagnostics[file][line][column]: | |
diagnostic_counts.setdefault(diagnostic, 0) | |
diagnostic_counts[diagnostic] += 1 | |
per_file_diagnostics[file][line][column].add(diagnostic) | |
else: | |
duplicates += 1 | |
line = fd.readline() | |
print( | |
f"Found {diagnostics_parsed - duplicates} diagnostics (out of " | |
f"{diagnostics_parsed} parsed; {duplicates} were duplicates).") | |
sorted_diagnostics = {k: v for k, v in reversed(sorted( | |
diagnostic_counts.items(), key=lambda item: item[1]))} | |
for (diagnostic, count) in sorted_diagnostics.items(): | |
print(f"{count:>5}: {diagnostic}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment